مقایسه اثر ضدعفونی کندیگر اشعه ماورای‌بنفش و ماده شیمیایی کورنکس بر سطوح

نویسنده‌ها: سید احمد فلاحی‌نیا و محمد تقی نورنژاد

پژوهش متصلی: کارشناس ارشد گروه زیست‌پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد

Email: afalahaty@yahoo.com

استاد: گروه پوستی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد

میزان ضدعفونی کندیگر آن با ماده شیمیایی کورنکس مقایسه گردید.

چکیده

ساختمان و اهداف: برای جلوگیری از پیخ عوامل پیماری با میزان بهداشتی مناسب

برای ضدعفونی سطوح آلوده آزمایش. این اقدام ارائه شده که کنترل و کاهش

در بوده و برای کارکنان و میزان هم اندازه است. این بررسی تحقیقات در مورد

روش‌های مختلف ضدعفونی سطوح سال‌ها زیادی

UVC است که از آن در زمان نوزاده هوا استفاده

می‌شود و برای گونه‌شناسی با استفاده از بی‌کروپاها مختلف منفعت است. با این

می‌باشد که UVC موجود در اتاقهای عمل بیمارستان سطوحی شفید ضدعفونی بر (با طول موج

254 nm) اندام‌های گیاهی و

روش بررسی: این مطالعه به روش توصیفی مقطعی انجام گرفت. میزان تبییه رضایتی با قسمتهای مختلف اتاق

با تقسیم ناند کف اتانبا به گروه UVC در محل های خاصی که از پیش تعیین شده بود (15 مکل) مانند

بیماری، روش تخت و انتزاعی UVC. نمونه های گیاهی از سطوح اتاقهای عمل قبل و بعد از

تمیز کردن استاندارد بیمارستان، تبییه UVC و ضدعفونی کندیگر برداشتان شد. نمونه‌ها با استفاده از

پیل‌های از ماهی استاندارد جمع آوری شده و با آن‌ها مقایسه گردیدند.

پایه‌های تأخیر نشان داد که دور رضایتی به قسمت‌های مختلف اتاقهای عمل بین سه تا 3785زول بر متر

میزان تبییه رضایتی آزمایش و نشان‌داد که در 41/67 CFU/sample به سطوح و بعد از ضدعفونی‌ای اضافی شیمیایی با کورنکس

UVC و ضدعفونی کندیگر به‌کارگیری 16/55 CFU/sample به سطوح و بعد از

کارنکس به نهایی بی‌کروپا با ترکب‌های مختلف تعداد کلونی‌های سطوحی را بطور معنی‌داری کاهش

می‌دهد (برای م در 2002).}

نتیجه‌گیری: با توجه به نتایج بدست آمده مشخص شد که در حداکثر تیمی از اتاق میزان دور تقویمی ضدعفونی

ولی در قرنطینه گروه بی‌علمی بعلت طولانی بودن زمان استفاده و اندازه دور دیده بود که این تربیت نتیجه‌گیری

بی‌علمی پرسنی بی‌علمی است. به این ترتیب نتیجه‌گیری که با استفاده در تعداد و محل بی‌علمی و زمان استفاده

بودن بی‌علمی ضدعفونی کندیگر UVC جدید نظر عمل آید و مناسب‌بودن تاریکی یکدیگر ضدعفونی کندیگر

یافته‌ها: نتایج نشان داد که تعادلانی که را UVC احتمال و بعد از ضدعفونی‌ای ضدعفونی کندیگر

کاهش به نهایی داری کاهش

تأثیر پذیرش: 1398/10/12

تاریخ وصول: 1398/10/12

تاریخ پذیرش: 1399/12/21

واژه‌های کلیدی: اشعه ماورای‌بنفش، ضدعفونی، اتاق عمل
مقایسه از ضدعفونی کندنگی اشعه مارواراینتش ماده‌شیمیایی کورنکس بر سطح...

مقدمه

اسنان از قبیل پیش اعتماد داشت که نوع خورشیدی می تواند از اشعه ضدعفونی جولگری کند. در مطالعه احتمالی 1877 دو محقق، دکتر اشک و دکتر اشک، که تکنیک ضدعفونی گانپیماها زمانی که تحت تاثیر نور آتشفشان، می‌گیرد موفقیت می‌گردد. برای جولگری از پخش عوامل بیماری را در محیط بیمارستان روش‌های بی‌دستی مناسبی برای تیزی کردن و ضدعفونی سطوح آلوهده شده با ماده بیولوژیکی لازم می‌باشد. برای بیمارستان‌ها روش است که این شیمیایی بسیار کرکس، تیزین، کریور و برای ضدعفونی کردن سطوح در مرحله نهایی ضدعفونی کردن این بکار می‌رود که وقت گیر زحمت دار بوده و بار کارکنان و محیط هم هم فاصله است. امروزه ضدعفونی ایا می‌توان به پخشش بکار رفته در محیط بیمارستان می‌تواند موثر شناخته شده بکار در محیط از موارد به عنوان مکمل سایر روش‌های ضدعفونی بکار گرفته شود. عملکرد DNA ضدعفونی کندنگی UVC بوسیله تجزیه ساختار DNA سلولهای زندگی شده می‌باشد. برای تخریب زنجیره‌های مولکولی بسته به نوع ارگانیسم مقداری نور UV می‌کوب کشیده می‌باشد. البته موقعیت در ضدعفونی سطوح با استفاده از UVC مقدار زیادی بستگی به مقاومت و پایداری موارد دارد که باید ضدعفونی شود. عموما اشعه UVC به دو مدت، اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی بسیار مناسب UVC تخریب کشتنه بررسید. اگر ارگانیسم در زیر سطح ماده ای باشد و برای ضدعفونی B
میزان تابش رشد نهایی به قسمت‌های مختلف اتاق به کمک رادیومتر Lybold ساخت شرکت UVC سه سانتی‌متر قرار گرفت (سطح کاری) انجام شد. سپس همچنین میزان تابش UVC در محل‌های خاصی که از بخش تعیین شده و بود (15 محل) مانند روت میز، روی تخت، روی استگنر درب، داخل فضه و ... نیز اندازه‌گیری شد. روزانه اتاق‌های عمل مطالعه استاندارد نظارت بیمارستان با آب و پودر شوینده تمیز می‌شد (1). کهنه های مورد استفاده در هر مرحله تعیونی می‌شد و بعد از نظافت در دمای 85 درجه سانتی‌گراد پوششی و بیمارستان بین‌دریایی توجه شد. نمایشگاه بیمارستان بین‌دریایی UVC‌های استفاده این طریق تازه کرده و از هر قسمت این 15 محل نمونه برداری گردید (جمع‌اکنون 65 نمونه) قبل از ضدعفونی شدن. سپس یکی از هر قسمت 15 محل با یک تیکه به حذف گرفته و به آن نمایشگاه بیمارستان و این نقطه به طوریکه هیچ گونه مایعی بداخل آن نفوذ نکند. در مرحله بعد با روش استانداردی که بیمارستان برای ضدعفونی این اتاق با کمک ماده شیمیایی کورنکس و واکنش استفاده می‌کرد نام اتاق پوسیله پرسل مرحله ضدعفونی شد. سپس پوشش قسمت‌های اول برنده شده UVC و قسمت‌های دوم با کاغذ‌های ضخیمی که در مقابل عبور کدور می‌باشد پوشانده شد و سپس بلافاهای لامپ‌های UVC روشن شدند. مدت زمان روشن بودن لامپ‌های UVC 14 ساعت بود که زمان معقول مورد استفاده بیمارستان برای ضدعفونی اتاق‌های عمل بیمارستان سوختگی شده صدفی یزد با UVC بود. بعد از این زمان روشن سیانی نمایشگاه به فاصله 15 محل نمونه برداشت شد. بنابراین با این تفسیر به قسمت اول فقط با UVC و قسمت دوم فقط با ماده شیمیایی کورنکس و قسمت UVC سوم با هر دو روش ضدعفونی شدند. نمونه‌ها کشف داده شد و میزان UVC dose (j/m2)=irradiance (w/m2) ×exposure time (in seconds)
یافته‌ها

نتایج اولیه آزمایشات نشان داد که درصد رشد به قسمتی مختلف اتاق های عمل بعد از 14 ساعت روشیدن نمایانگر است (اندازه‌گیری شده بر اساس تعداد ژنریک تیتانیوم ۱ تکراری) بر اساس دستگاه‌های اتاق های عمل. نمودار ۱ نشان‌دهنده که در حداقل تعدادی از اتاق های میزان دوز تقریباً یکسان بود ولی در نزدیکی نمایانگر میزان دوز حتی از میزان استاندارد نیز بالاتر است (بلعید زمان روندو بودن طولانی). نمودار ۱ مربوط به میزان دوز رشدی به اتاق عمل بخش سوختنی و نمودار ۲ مربوط به میزان دوز رسیده به عنوان مختلف اتاق عمل بخش پستی بیمارستان سوختنی شهید صدوقی یکتا است. مقادیر دوز از حاشیه ضرب زمان ضعف‌جویی که در این مطالعه ۱۴ ساعت بود و میزان مطلق تایبیده در این نقاط مختلف، محاسبه گردید. روزی که اتاق عمل بخش ژن‌ژن است (اندازه‌گیری شده در ارتفاع یک متری، میزان تایبی از صفر تا ۷۵۳ w/m²) و در اتاق عمل بخش سوختنی از صفر تا ۳۱۰ w/m²، منجر بود. برای همه نمونه‌ها ماتریکس محلول نسبت به ماده شیمیایی ترکیب‌های UVC مستقیم تحقیق اینکه تایبی در محیط‌های ثابت قبل و بعد از ضعف‌جویی گرفته شده. از پلت های SETI ارزیابیاس دستگاه UVC را به صورت تقریبی حدود ۲۰۰ Cm² به برای قطعه‌ای ۱۵۲۲ میکروگرم بیشتر از شده بود استفاده گردید. نمودار ۴ یافته‌ها را تکیه داشته و به آزمایشگاه میکروب شناسی دانشگاه یزدک هوشیارمظفری یکتا در دانشگاه علوم پزشکی شهید صدوقی یزد ارسال و در آنها به مدت ۴۸ ساعت سبک و احتمالی تهیه دهده کولونی (colony forming) سپس واکنش داده‌های تهیه دهده کولونی (colony forming) از دستگاه طنینه روی، نشان دهنده رشد کننده و به شماره و تعیین هموئوی انجام نشده. حد (units) یکتا ۱۵۰ بود (نمونه‌های ۶۰ bp/plate) باید شمارش رشد بالا (p<0.05) و نمونه‌های ۶۰ bp/plate، رشد بالا (تشکیل دهنده بیشتر از ۸ تایبی شده اما در شکل‌ها و محاسبات آماری منظور نگرفته‌اند. فقط هنگامی که در اتاق اینکه نوبت واحدها UVC فعال می‌شود باید مقایسه تابی حاصل از اندازه‌گیری به‌یاد برداشته نمونه‌هایی از تابی (Wilcoxon Signed رGRAY) نت نمر افزار Ranks Test) از استفاده شد.
فصلنامه علمی پژوهشی دانشگاه بهداشت و پزشکی

۱۹/۱۳ رسید، استفاده اضافی از تابش UVC یافته‌ای مفیدی دارد. تعادل کولنی‌ها را با استفاده از متوسط ۱۲/۱۳ cfu/sample و تقلید داده (P=0.001) روی سطوح‌های UVC که مستقیماً تحت تابش قرار گرفته‌اند حداکثر ۱۶ شمارش شد. در اغلب سطوح دیگر که تابش بالاتر از ۱۳۱۰ w/m² دریافت کرده بودند، میزان تعداد cfu/sample بعد از تابش آمد. البته حاصل دو نمونه از ضدعفونی‌هایی که کورنکس میزان گلادگی بالایی ۱۵۰ بود که می‌تواند نشان از آلودگی و تمرکز نیز بود. زیر سطح بالا نمودار آمده. در مقایسه با نمونه‌برداری با کریائی‌ای اصلی، هم استفاده از UVC که می‌تواند با نمونه‌برداری با عایق شیمیایی که کورنکس میزان متفاوت تعادل کولنی‌های سطحی را بطور معنی‌داری کاهش می‌دهد (برای هر دو ۰/۰۰<P). (P<0/01)

نمودار ۲: توزیع دور UVC در اثر عمل بهشت پوست

نمودار ۳: توزیع دور UVC در اثر عمل بهشت سوختگی

 المشاهده‌های شده در اثبات عمل بهشت پوست به علت اختلاف زیاد سطح تابش انحراف استاندارد حین از میانگین نیز بیشتر است. در محل‌های دیگر سطوح نماس اتاق‌های عمل سطح خروجی از صفر تا ۸۳/۳ وات بر متر مرعی تغییر UVC می‌کرد. آزمایشات نشان داد که تعادل کولنی‌ها را روی سطوح اتاق‌های عمل، از متوسط ۴۴/۸۰ cfu/sample قبل از ضدعفونی با UVC ۴۱/۶۷ cfu/sample از ضدعفونی‌های شیمیایی که کورنکس به آن تجدید نمودار تعداد کولنی‌های تهیه شده به‌طور میزان ۱۶/۵۳ کاهش می‌یابد. (P<0/01). بیشترین آلودگی در روی میز، دستگاه صندلی، کمد لباس، پایه میز اتاق عمل و روی درب آلومینیوم و روی بخارال بود. بعد از تمرکز کردن استاندارد ضدعفونی شیمیایی اتاق عمل بهشت پوست تعادل کولنی‌های تشکیل شده به‌طور می‌کرد. (P<0/01).
نمودار ۳: تعداد کلونی‌های بر پیلی (cfu) نمونه‌هایی به‌دست آمده در آنالیز عمل بخش پوست قبل و بعد از ضد عفونی با مواد UVC، شیمیایی و با UVC

بحث و نتیجه‌گیری

در حال حاضر، داده‌های کافی وجود دارد تا نشان دهنده UVC عملکرد آن را به عنوان یک وسیله قابل‌توجه عفونت ناشی از نامناسبی طبق داده‌های پیش‌آمده، میزان شمارش باکتری‌ها و اسپراکتی‌ها با ترتیب با دوزهای ۱۸ تا ۸۰ j/m² در میانگین ۹۰٪ می‌باشد. محققین این برجستگی از افزایش دوز از دستگاه و بررسی مطالعات نشان داده‌های که دوزهای ۹۰۰-۹۰۰۰ j/m² توانایی ۹۹/۹٪ از باکتریها را غیر فعال کند (۹-۲).

در تحقیقی که آقای Anderson و همکاران در پایه‌ای از بیمارستان‌های تروز در سال ۲۰۰۵ انجام دادند، چهار بخش از آن را به دوزهای مختلفی از ضد عفونی که عمدتاً بر پایه UV و همکاران در سال ۲۰۰۸ نشان دادند که G.Katara آقای لامپ‌های میکروب کش نصب شده بر روی دیوارهای جابجایی اتاق‌ها نکته بوده ولی لامپ‌های آوزان از سقف در ارتقای ۲۰۳ متری موتورات، حالت است. آن‌ها نشان دادند که بازه‌ی ضدعفونی تا فاصله ۲/۲ متری در هر طرف از لامپ‌ها مناسب مطالعه‌های جهت در نزدیکی انجام می‌تواند، حداقل ۵ واحد دیواری نشان دهد. در هر بخش، اتاق بیمار دارای ۹ واحد UVC و ۱ واحد محققین در انتظار دو واحد دیواری و یک واحد سفید و حمام، حس و ۲ واحد دیواری و یک واحد سفید که بزرگی UVC در
استفاده از اتاق عمل امکان پذیر نیست. از طریق یا با وجود اینکه زمان روشن بودن لامپ‌ها خیلی زیاد بود، اما به حذف این نیمی از اتاق‌های عمل قریب‌ترین سطح دوری از UVC نسبت بررسی. تکه ممکن است وظیفه اختلاف می‌باشد در اتاق عمل بخش پوست و اتاق عمل بخش سوختگی بخصوص ماکزیموم مقدار آن بود. دلیل این مسئله نیز به نحوی تغییر می‌رفت. در اتاق عمل بخش پوست با اینکه لامپ‌ها ب روز دیوار نصب شده بودند، اما جهت آنها تا حدود 35 درجه بسیار بالا بود. در اتاق عمل بخش سوختگی جهت لامپ‌های نصب شده قریب به دیوار عمد بود، به این ترتیب در اتاق عمل بخش پوست در نزدیکی لامپ‌ها توزیع دوز بیشتر و ماکزیموم آن نیز بیشتر بود در حالیکه در اتاق عمل بخش سوختگی به نقطه دوز بیشتری می‌رسید و در نزدیکی لامپ‌ها ماکزیموم دوز کمتر بود.

استفاده از UVC با کورنکس به تنهایی با در ترکیه‌ای مختلف با یا بدون تمرکز کردن بطور معنی‌داری میکروپاریزی ترکیه‌ای UVC تعداد واحدی کننگی تشکیل یافته کلولونی را به متوسط 187/6 برای هر نمونه در اتاق 118cfu/sample در اتاق تمیز شده کاهش می‌دهد (0/1).4

کمترین تعداد متوسط 3/5 cfu/sample بعد از ضدعفونی کورنکس متعاقب تمرکز کردن و تابیت UVC و تهنای اندوزه گیری شد. این روش دیگر نیاز به ثابت نبود. بنظر مرتبه استفاده از کورنکس قبل از واردات اثر متعارف معنی‌داری در تعریب در دارید هبی روز UVC میکروگلاسیمی خاصی در اتاق عمل دارد و تعداد باکتریها را بطور قابل ملاحظه ای هم در سطح تمیز شده و هم در سطح تمیز نشده کاهش می‌دهد.

است. همچنین، زمان قرار گرفتن در معرض نور UVC در این حالت به مدت 30 دقیقه دوکاست. در این شرایط به بهبود فعالیت پاتوژن‌های شایع مانند باکتری‌های هوازی، یا هوازی و همچنین حساسیت‌های آنتی‌بیوتیک‌های کلستریدیوم چهار مربیت در میزان

نگارنده کاهش یدت می‌کند (14).

همانطور که در نتیجه آمده است دور رشد به بخش از نیمی از کف هر دو اتاق عمل بخش پوست و بخش سوختگی قریب

صدف بود. این مسئله در عمل لامپ‌های UVC در یک طرف (گوشه) اتاق بود. 2- لامپ‌ها بر روی

دیوارها نصب شده بودند. بنابر این نتیجه به آنکه فاصله موثور برای ضدعفونی سطحی متوسط لامپ‌های کمتر از 25 متر می‌باشد حذف نیمی از اتاق‌های عمل در فاصله بین از آن قرار داشتند. همچنین، چون لامپ‌ها بر روی سقف نصب نبودند دور کمتری به سطح کف می‌رسید و توزیع دوز نیز یکسانی کمتری داشت. از طرفی زمان روشن بودن لامپ‌ها بطور متوسط 14 ساعت بود که با زمان معمول استفاده در بیمارستانی خارج فاصله بیش از 14 و 1106/5. همین ترتیب در قسمت‌هایی از اتاق که نزدیک امام قرار داشتند دور رشد بیشتر زیاد در ماکزیموم حالت 7951 زول بر مر مربع و در قسمت‌های دور رشد بر سطح. مدت زمان زایدی که لامپ‌ها روشن هستند نهایی منفی زا در دیگر که از جمله آنها عبارتند از -1 طول عمر لامپ‌ها محدود است و زمان تعیین لامپ‌ها با یکی می‌آید. و با توجه به گرانقیمت بودن این لامپ‌ها هزینه زایدی اجباری نمی‌کند. همچنین، هزینه معترض برک را بالا می‌برد. -2 تابیت زیاد UVC به وسیله پلاستیکی و پامی اتاق عمل باعث

کاهش طول عمر آنها می‌شود و 2-به‌همگام روشن بودن لامپ‌ها.
در تحقیق حاضر در بیش از نیمی از اتاق‌هایی که نمونه برداری صورت گرفت (در طرفی که لامپهای غیر فعال بودند) در J/m² (از 736 در میان 476-835 w/m²) قرار گرفتند. بنابراین خروجی UVC و اظهاری که روشی از سطح اتاق‌های عمل کاملاً کافی بود تا اغلب از اتاق‌هایی که جمله اسپورها و اغلب ویروسها یا اندازه‌های جنگلی از قلمرو استفاده می‌کنند، بیانگر سطح UVC با چنین روشی را غیر می‌داند. بررسی‌های RNA مثل آدنوئوروس) خیلی مقاومتر از ویروس‌های نکت رشتی DNA (مثل پلی ویروس) بروز داده‌های خود باشد. علاوه بر این، بعضی از بیماران و آدنوئوروس‌ها می‌توانند بروز مستقیم یا غیر مستقیم آسپرولاراده از تاثیر ریز را نشان دهد و همگرند نمایند (عفالت مجدد نوری). مقدار عفالت مجدد نوری در میان میکروب‌ها متفاوت است (6-7). بنابراین مطالعات بیشتری لازم است تا محدودهٔ عوامل درمانی زا را ارزیابی کرده و اثر UVC دوزه‌گیری گوناگون را با توجه به نوع میکروب و زمان ناشی لازم برای آنکه عفالت مجدد میکروب رنگ ندهد بسیاری همچنین بیش‌تردی می‌شود از نام اتاق‌های عمل و اتاق‌های UVC از طریق این نمودارها که در آنها لامپ نصب شده است دوزی‌ی میکروب UVC به تدریج کاهش می‌گیرد. همچنین بیش‌تردی‌های چنین عمل می‌توان از UVC سیستم‌های که هوا اتاق را در داخل تولید که لامپ‌هایی قرار دارند عبور داد. البته ممکن است در نهایت از اتاق عمل مانند تخت عمل یا مزینه که وسایل عمل بر روی آن قرار دارد به دوست‌پذیری نیاز باشد که بایستی این مسئله را در طراحی تهیه نصب لامپ‌های ضدعفونی کننده UVC

References

1- O’Connellf NH, Humphreys H. Intensive care unit design and environmental factors in the acquisition of infection. Journal of Hospital Infection 2000; 45(4): 255-262

3-Priv DI, Maier UP. Inactivation of bacteria, viruses and other pathogens by UVC irradiation in the Leica cryostat product family, Labor fur Microbiologie und Okotoxikologie 2007;34(2):76-79

4-Klaus PK, Chaberny IF. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 2003; 53: 71-77

9- Andersen B M, Bårnud H. Comparison of UVC Light and Chemicals for Disinfection of Surfaces in Hospital Isolation Units. Infect Control Hosp Epidemiol 2006;27:729–734

12- Technical Project Report: Air Quality, Destruction of Microbes, and Use of Negative-Pressure, Filter, and UVC Technology in Patient Isolates. Oslo: Klean, Siemens, Ullevål University Hospital; 2000:5-24

The Effects of UV C Light and Cornex for Disinfection of Surfaces in Yazd Shahid Sadoughi Burn Center

Falahati SA * (MS.c), Noorbala M.T ** (MD), Malek M *** (MS.c)
*Corresponding author: MS.c, Department of Medical Physics, Shahid Sadoughi University of Medical Sciences Yazd, Iran
**Professor, Department of Dermatology, Shahid Sadoughi University of Medical sciences Yazd, Iran
*** MS.c, Department of Medical Physics, Shahid Sadoughi University of Medical sciences Yazd, Iran

Abstract

Background: To control the spread of pathogens in hospital environments, good hygienic routines are required to disinfect surfaces contaminated with biological materials. Chemicals have traditionally been used to disinfect surfaces during final room disinfection. However, chemical disinfection is both time- and labor-consuming, and it might be harmful for staff and the environment. The search for more environmentally friendly and healthier methods has therefore been under way for many years. UVC light (200-280 nm) has germicidal effect on microorganisms in water, on surface, and in air. However, its lethal dose for various microbes is different. In this study, the dose of UVC lamps (wavelength 254 nm) in hospital operating rooms of Shahid Sadoughi Burn Center were measured and its disinfectant strength was compared with a standard chemical disinfectants (Cornex).

Method: In this cross-sectional descriptive study at first the UVC irradiance levels were measured after 14 hours light exposure at the outset. The distance between the measurement locations was 50 cm and the radiometer was put on the 80 cm height of the floor. In addition the UVC irradiance levels were measured in 15 other sites including surfaces on the table, bed, door handle, inside the rack etc. Microbial samples were obtained from surfaces in isolated units before and after standard hospital environmental cleaning, irradiation with UVC and cornex disinfection. Samples were collected using standard contact plates and were compared together.

Result: The results of this study showed that the UVC detected dose was 0.37951 j/m². Also the results showed that UVC markedly reduced the number of bacteria on surfaces in operating rooms, from a mean of 64.80 cfu per sample to 41.67 cfu per sample after UVC disinfection and to 16.53 cfu per sample after additional cornex disinfection. So the use of UVC and of cornex disinfection alone or in different combinations significantly reduced the amount of surface contamination (P<.001 for both).

Conclusion: According to the results obtained, the detected dose in about half part of the locations was almost 0 j/m², while in the places near to the lamps the detected dose was higher than the required dose for resistant virus inactivation due to long time exposure. Therefore it is concluded that the number, locations of the UVC lamps, and also the exposure time should be changed according to the standard dose for all parts of the room. On the other hand, UVC is not suitable and efficient disinfectant for the sites that are in shadow. Therefore, these places must be disinfected by a combination of UVC and chemical disinfectants.

Keywords: Dosimetry, UV light, Disinfection, Operating room