اثر پرتودهی بر ویژگی های عملکرده صمغ
کتیرا

نویسنده‌گان: ندا ملایلی میبیدی، محمدامین محمدی‌فر

1. دانشجوی دکتری علوم و صنایع غذایی، استاد بهنی استحکامی، کارشناس غذایی، دانشگاه علوم تغذیه و صنایع غذایی، دانشگاه پزشکی شهید بهشتی تهران
2. نویسنده، مسئول دانشگاهی گروه علوم و صنایع غذايی، استاد بهنی استحکامی، کارشناس غذایی، دانشگاه علوم تغذیه و صنایع غذایی، دانشگاه پزشکی شهید بهشتی

Email: mohamdif@ut.ac.ir

شماره مسلسل: 06

روش بررسی: اثر پرتودهی ویژگی‌های رولولزیکسی، پارامترهای توصیف کننده اندازه ذرات، پتانسیل زن و کش سطحی پراکش/50% وزنی، وزنی صخ شکری پرتو دیده در دوره‌های مختلف (سفره 7 - 120)

چکیده

مقدمه: پرتودهی، یک نیاز فیزیکی است که طی آن به منظور بهبود ایمنی و کیفیت محصول وارد می‌شود. برخی از پرتوده‌های استاندارد، به‌طور کلی بهبود ویژگی‌های ناخواسته صمغ ایجاد می‌کنند. در این مطالعه، اثر پرتوده‌های مختلف بر ویژگی‌های صمغ ارزیابی گردید.

روش بررسی: اثر پرتوده‌های مختلف بر ویژگی‌های صمغ ارزیابی گردید.

نتیجه‌گیری: اثر پرتوده‌های مختلف بر ویژگی‌های صمغ ارزیابی گردید.

واژه‌های کلیدی: پرتوده، صمغ کتیرا، ویژگی‌های عملکرده صمغ
مقدمه

به طور معمول أكثر مواد غذایی به کمک حرارت و با قرار گرفتن در دامنه حرارتی ۱۰۰-۴۰ درجه سانتی‌گراد به مدت چند ثانیه تا چند دقیقه سالم‌سازی می‌شوند. تا کنون، تحقیقات در مقدار زیادی از زیادی به ماده غذایی منتقل می‌شود که ممکن است منجر به ایجاد واکنش‌های ناخواسته و تغییرات نامطلوب در آن گردد. با توجه به اینکه علاوه بر عمر مانگاژی کیفیت غذا نیز از نظر مصرف کندن اهمیت دارد، امروز روش‌های غیرحرارتی نگهداری مواد غذایی گسترش زیادی یافته‌اند (۱). روشهای غیرحرارتی که امروز در زمینه سالم‌سازی غذاهای استفاده می‌شوند (۲) از دسته‌ای مثل: نواحی‌های الکتریکی بالسی (۳)، نواحی‌های نوری (۴)، پروتوهای، مواد شیمیایی، مواد بیوشیمیایی.

پروتوهای مواد غذایی نوعی فرآیند سرد برای افزایش مانگاژی غذا محصول می‌شود که طی سال‌های اخیر توجه زیادی را به خود جلب کرده است. این روش ضمن ایجاد ترکیبات سمی و با رادیواکتوی در ماده غذایی ایجاد نمی‌کند. نتایج سودمندی نیز به همراه دارد که از جمله آنها می‌توان افزایش زمان نگهداری محصولات ربیشی، ضدعفونی، خرد کردن دودها، موه‌ها و غلات، کاهش میکروگیمس‌ها و عامل فساد، تأخیر در رسیدن میوه‌ها، بهبود خصوصیات حسی مواد غذایی و تخریب با کاهش میکروگیمس‌ها بیماری زای غیر قابل انتصاب به ویژه عوامل آلوئید کننده مواد غذایی خام با منشا گیاهی اشاره نمود (۵). در سم ۱۹۶۰ کمیته‌های FAO/ WHO/ IAEA دوز ۱۰ کیلوگرمی را بر محصولات غذایی مجاز دانستند (۶). هرچند که در مورد برخی محصولات تا ۷۵ کیلوگرمی نیز
توصیف کننده اندوزه ذرات، پنانسیل زنا و کش سطحی پراکش محتوای 0/15/0/ وزنی- وزنی صم کشی-است.

روش بررسی

صحح کننده به صورت نواری (مفتولوی)، تراویده از گونه آستراغالوس گوسپینوس به کمک کارشانسان اداره کل منابع طبیعی از استان اصفهان جمع آوری شد. مواد شیمیایی دیگر (سندیم ازد) از شرکت مرسک/ کریبیاردی (Merk, Germany) پرتوی شد. مصرف کننده پودر شده با عاده 200 تا 500 میکرون

برتوی هر پرتو پرساً 70 تولست دستگاه گاما سیل 242 با میزان دور 3/41 Gy/sec و اکتشه 13922 دلی جامعه.

پرتوی در دمای 25 درجه سانتی گراد و در دوزهای 0/75، 3 کیلوگرمی انجام شد. پراکش‌های صحح کننده با حالت نمودن 0/75 وزنی- وزنی- وزنی از پودر صحح کننده پرتو دیده در دوزهای مختلف در 95 گرم آب دیویژه تحت هم زدن آرام در دمای محیط به مدت 2 ساعت، با استفاده از هزمن مگنت دار، نهی شدند. سپس برای اطمینان از آی‌کیو کامل، به مدت 24 ساعت در دمای 100 درجه گدازه شدند.

پایش پارامترهای توصیف کننده اندوزه ذرات موجود در سامانه، بر اساس تکنیک توقیف نور لیزر، با استفاده از دستگاه آنتیلیزر (Cilac Particle Size Analyser) انجام ذرات (فرانسه) 13922 نمونه 900 مجهز به بورد لیزر هلم- نتون (طول موج 435 نانومتر) انجام شد. به منظور ممکن‌سازی از توقیف چندگانه نمونه‌ها به نسبت 1:100 با آب دیویژه رفیق شدن (5/8 obscuration).

نتایج حاصل توصیف نمایان از توزیع نتایج پارامترهای معیاری با اساس

24/0-3/1% زض ِیتیت GRAS لطاض ٌطفت. وٕیتٝ وبضقٙبؾی (JECFA) این صم را تحت عنوان غذایی (پالترینه رودریجی، آنزیم غذایی) طبقه‌بندی نمود. کننده حنای شماره 25 5 در لیست پذیرفته شده توسط اداره اینم مواد غذایی اوریا (FAO/WHO) است. این صم رک‌پلیر کروهیدراتی هیدرولی فلزه‌ژوک شبدی اشاره دارد که در صنایع غذایی به عنوان قوام‌دهنده، عامل لزاس، جابجگی چری ایستاده می‌شود (11)، ضمن اینکه تولانی کاهش‌دهنده‌کننده سطحی و زمین صم در نتیجه تولانی باید باید اصولی امکان‌های رونِگ در آب را تماش دارد (12).

آماده‌سازی هیدرولی کلوده‌ها با مشابه‌گی ممکن است منجر به آب‌لیگی آن گردد. از این رو، پرتوی‌های متواندی راه حل مناسب برای این آب‌لیگ آن‌دان‌باشند (13). قرار دهی کروهیدراتی هیدرولی‌ها در معرض پرتو می‌تواند ویژگی‌های ساختاری و در نتیجه ویژگی‌های عملکردی مطلوب آنها را دست خوش نماید.

تغییر قرار دهد.

با توجه به خصوصیات منحصر به فرد بودن صحح کننده ایران که از لحاظ اقتصادی به صرفه و حاصل اهمیت است و با توجه به روندی رو به رشد اندازه حفظ‌کننده برای کاربرد هرچه بیشتر گونه‌های مختلف آن به عنوان افزودنی در صنایع مختلف و معنی‌های تولانی این صم در مقایسه با سایر هیدرولی‌کننده‌ها و از لحاظ ایمن بودن آن در کاربرد‌های غذایی هدف از پژوهش تجربی حاضر، بررسی ترک‌پلیر در دوره‌های معین صنف، 5/0-1/75 کیلوگرمی بر وزنی‌های رئولوژی‌کان، پارامترهای

Downloaded from tbj.ssu.ac.ir at 3:08 IRST on Saturday February 29th 2020
اثر پرتوهای بر وزن‌های عمک‌داری صمغ کنیا

مدل فانه‌یو در قابل شاخه‌های (\(D_{3,9}, D_{9,5}, D_{5,0}\)) گزارش شده است. \(D_{0,5}\) نمایانگر 90/50 و 50/0 ذرات موجود در اطراف قطری کمتر از مقادیر داده شده هستند. (4.3) میانگین مثبت بر حجم ذرات است.

\[
D[4,3] = \frac{\sum n_i d_i^3}{\sum n_i d_i^2}
\]

کلیه آزمون‌ها با استفاده از دستگاه رنومت جرخی (Anton Paar، MCR 301) مجهز به سامانه تنظیم (Circulator) و سیرکولیتور آب با حساسیت ±1/2 در دمای به کار گیری زنودری استوانه هم ممحور (CCT) انجام شد. هم‌چنین، برای جلوگیری از تبخیر محلول، نمونه‌ها در طول آزمایش با مون‌آژ یا هیدروژن متان شده و به منظور منتج به (Solvent Trap) پوشانده شدند. به منظور خنثی کردن ویبای اتمی و تغییر وزن‌های رئولوژیک سامانه امکان‌رسانی، آزمون‌های انجم‌شده برحور زیر است.

آزمون‌های انجم‌شده برحور Zیر است.

ویک‌پرسی نمونه‌ها در حجم‌های سرعت برزشی (\(s = 1000\)) در دمای 25 درجه سانتی‌گراد اندازه‌گیری شد. میس مدل باولا یا داده‌های تجربی به دست آمده در حجم‌های سرعت برزش‌های میانی برافرز و مقادیر انحسار رفته‌خراسانی (n) و ضریب قوام (m) تعیین شد.

\[
\mu_a = m \gamma^{n-1} \mu_a
\]

\[
\mu_a \text{ ضریب قوام (Pa.s)}
\]

(3) صبورت گرفته در طول آزمایش (\(R_0\) استفاده شد. برای تعیین کفتی برافرز نیز از \(R_1\) استفاده شد.
کلیه ملاحظات اخلاقی مربوط به این مقاله طبق بیانات همبستگی رعایت گردیده است.

یافته‌ها

توزیع اندازه ذرات: پرامترهای توصیف کننده توزیع اندازه ذرات پراکش‌های محضی، وزنی صنع کیبرای پرتو دیده در دوزهای مختلف در جدول 1 نشان داده شده است. مقادیر $D(4,3)$، $D_{10}$ و $D_{25}$ از توزیع میثی بر حجم بدست آمده. پرتوهده در تمام دوزها منجر به کاهش معنا داری در این مقادیر می‌شود. این پرتوهده در میزان دوز 75/0 کیلوگرمی را تا حدودی افزایش می‌دهد. به منظور تعیین تأثیر پرتوهده در میزان پراکش‌های اندازه ذرات بزرگ، مقادیر مطلق با رابطه (2) برای توزیع میثی بر حجم محاسبه و در جدول 1 گزارش شد. مطالعه اثر پرتوهده بر پلی دیسرپستی سامانه (span)، حاکی از آن است که پرتوهده تا میزان دوز 75/0 کیلوگرمی، پلی دیسرپستی سامانه محضی آن را به طور معنی‌داری کاهش می‌دهد ($p<0.05$). ادامه پرتوهده در میزان دوز 3 کیلوگرمی، اگرچه پرامترهای توصیف کننده اندازه ذرات پرتوهده در دوزهای مختلف

جدول 1: پرامترهای توصیف کننده اندازه ذرات در دیسرپستی کیبرای پرتوهده در دوزهای مختلف

<table>
<thead>
<tr>
<th>پرامترها</th>
<th>$D(4,3)$</th>
<th>$D_{10}$</th>
<th>$D_{25}$</th>
<th>$D_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha$</td>
<td>0.62</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>$\alpha^*$</td>
<td>0.62</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>$\alpha^s$</td>
<td>0.62</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>$\alpha^t$</td>
<td>0.62</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
</tr>
</tbody>
</table>

حرف یکسان نشان دهنده عدم اختلاف معنی‌دار در سطح 0/05 است.
آزمون روش کرنش: آزمون روش کرنش عموما به منظور تعیین محدوده ویسکوپیستیک خطي جهت استفاده در آزمون روش فرکانس انجام می شود. محدوده ویسکوپیستیک خطي، محدوده ای است که در آن مقادیر مدول يافته و ذخيره مستقل از کرنش بوده و رفتار سامانه و ویسکوپیستیک بی گزشت پذیر است (9).

محدوده ویسکوپیستیک خطي برای نمونه های تهیه شده در حضور صفح کتییر پرتو تدی، در دوزه های مختلف در نمونه ۲ نشان داده شده است. ملاحظه می شود سانمه محضی صفح کتییر پرتو تدی در ۸۰ کیلوگرم بالاترین مقادیر مدول يافته دنباله را داراست. با ادامه پرتو تدی در دوزه های بالاتر این مقادیر کاهش می یابد.

همانگونه که در شکل ۲ مشاهده می شود در سانمه محضی صفح کتییر پرتو تدی، در فرکانس های پایین تر از ۱/۱۵۸ Hz رفتار ویسکوپیستیک غلبه است، اما در باره زمانی کوتاه آزمون (فرکانس های بالاتر) رفتار الستیک غلبه می شود. مقادیر ق (فرکانس نقطه عطف) با افزایش دوز پرتو تدی به مقادیر کمتر متفاوت می شود.

نمودار ۱: اثر پرتو تدی بر ویسکوپیستیک محیطی دیسپرسیون ۵٪ کنیا در نخ برخ سامانه گوناگون

این جملات به زبان فارسی است و به محتوای ویسکوپیستیک مربوط می‌شود. نسخه انگلیسی نسخه جدید را به میزان دوز در دوزه‌های مختلف در نمونه و در نتیجه آن مقادیر مدول یافته و ذخیره مستقل از کرنش بوده و رفتار سامانه و ویسکوپیستیک بی‌گزست پذیر است.
نمودار ۲: آزمون رویش کرنش دیسرپسیون ۵/۰٪ محضی صمغ کنترای پرتویده در دوزهای مختلف

نمودار ۳: آزمون رویش فرکانس دیسرپسیون ۵/۰٪ وزنی - وزنی محضی صمغ کنترای پرتویده در دوزهای مختلف
نمودار 4: اثر پرتودهی صمغ کتیرای یکی از نواحی آن در کاهش کشش سطحی

نمودار 5: اثر پرتودهی صمغ کتیرای در دوزهای مختلف بر میزان پتانسیل زتا ایجاد شده در سیستم

آزمون اندازه‌گیری کشش سطحی با توجه به فعالیت سطحی صمغ کتیرای و نواحی مختلف سطح کششی، اندازه‌گیری کشش سطحی را محدود جهت تعیین کارایی پک امولسیفایر محصول می‌شود (14). نمودار 4 داده‌های مربوط به اثر پرتودهی بر نواحی سطحی، اثر پرتودهی بر پتانسیل زتا ایجاد کننده داده‌های پتانسیل و فاقد اثر فیزیکی در نمودار 5 نشان داده است. پرتودهی صمغ کتیرای تا میزان در سطح 0/67 mN/m به ترتیب اثری در کاهش 0/75 mN/m داشته است.
کیلوگرمی پنل‌سازی زنا را اندازی می‌نماید و از مقدار 24/85 میلی ولت در سامانه محوری صگ کیئر پرتوگردیده به مقدار 34 میلی ولت رسانده. این پرتوگرده در دوره‌های بالاتر، به منفی سامانه‌ها تا حدودی کاهش می‌دهد.

بحث و نتیجه گیری

اثر پرتوگردیده بر پارامترهای توصیف کننده اندازه ذرات: سامانه‌های محوری صغ کیئر پرتو ندیده به علت حضور دو جزء تراکتکرتیو و یاسوسین با شفاف‌های هیدرودینامیک به ترتیب 12 و 30 میکرومتر سامانه‌های پلی دیسرس هستند (9). داده‌های حاصل از پرتوگردیده در دوره‌های مختلف توزیع اندازه ذرات پراکنش 9/5٪ وزنی صخ کیئر، حاکی از تأثیر معنی در پرتوگردیده بر توزیع اندازه ذرات است. پرتوگردیده به علت نتیجه‌سازی کشور فاضل، توزیع اندازه ذرات را کاهش می‌دهد. افزایش دوز پرتوگردیده تا 675 کیلوگرم پلی دیسرسید سامانه را کاهش می‌دهد. پرتوگردیده در دوره‌های بالاتر علاوه بر تخریب بیشتر ذرات و کاهش پارامترهای توصیف کننده اندازه ذرات پلی دیسرسید سامانه را نیز افزایش می‌دهد که احتمالاً ناشی از افزایش تعداد بیشتر ذرات با اندازه کوچکتر در اثر پرتوگردیده در دوره‌های بالاتر باشد (15).

اثر پرتوگردیده بر تعیین رفتار جریان: کاهش ویسکوزیته پراکنش‌های محوری صغ کیئر اثر افزایش سرعت برضی و به عبارت دیگر رفتار سودولاییستیک آن ناشی از جهت یابی پلی‌سکارید در نتیجه اعمال لیوری برضی است (17، 16). پرتوگردیده صغ کیئر در 675 کیلوگرم ویسکوزیته سامانه را افزایش می‌دهد. با در نظر گرفتن دو پارامتر: ساختار هتروژن و شاخه در صغ کیئر (18) و بالاتر بودن ویسکوزیته پلی‌مرکه‌ای

خطی از پلی‌مرکه‌ای شاخه دار (19) به نظر می‌رسد پرتوگردیده صمغ کیئر در میزان دوز 75 کیلوگرمی به گونه‌ای ساختار آن را تغییر می‌دهد که شاخه‌های جانی تا حدودی جدا شده و امکان بر هم کنش زنجیره اصلی فراهم می‌گردد و بدین ترتیب در سامانه‌های مشابه کاهش پرتوگردیده در دوزهای بالاتر با شکست ساختار به قطعات کوچکی منجر به تضعیف ساختار سامانه می‌شود (20).

ضریب اطمینان بنا بر گزارش شده از برآورد مدل پاول بر داده‌های تجربی بیانگر تطبیق صحیح این مدل بر داده‌های است. پراکنش‌های محوری صمغ کیئر پرتو دیده در 765 کیلوگرم بیانگر ضریب قوام بالاتر سامانه و در نتیجه ایجاد ساختار در سامانه است.

ادامه پرتوگردیده در دوره‌های بالاتر، ضریب قوام را به طور معنی‌دار کاهش داده که ناشی از تأثیر دوره‌های بالای پرتوگردیده در خریدردن ساختار صمغ و در پی آن شکست ساختار است (20/21).

کاهش مقاومت گزارش شده برا اندس جریان با افزایش دوز پرتوگردیده بانک حساسیت کمتر سامانه‌های محوری صمغ کیئر با پرتو دیده در دوره‌های بالا به سرعت برخ است. اثر پرتوگردیده با آزمون روش کرنش‌نمونه وابستگی مدول‌های افزایش دهنده برا کرنش برا یک صمغ‌های محوری صمغ کیئر با پرتو دیده در دوره‌ها مختلف دو ناحیه معنی‌دار ناشی از تأثیر دوره‌های پرتوگردیده در سامانه با بهبود ویسکوالاییستیک خطی که در آن مقادیر الاستیک و محدوده ویسکوالاییستیک مستقل از کرنش است و محدوده ویسکوالاییستیک غیرخطی که در آن مقادیر الاستیک و ویسکوالاییستیک کرنش شروع به کاهش می‌نماید.
ساختار روی‌پوشی صمغ کبیری پتروی دیده در ۷۵/۰ کیلوگرمی بالاترین مقادیر مدل‌های افت و ذخيره و در نتيجة قوی ترین ساختار را در این ناحیه دارد ضمن اینکه در تمام محدوده کرنش رفرنگ الاستیک غالب است، به عبارت دیگر این صمغ در سامانه ایجاد زد ضعیف می‌کند که پایداری خود را در تمام محدوده کرنش حفظ می‌کند. احتمالاً پتروپی صمغ کبیرا در میزان ۷۵/۰ کیلوگرمی به گونه‌ای ساختار اثر گذاشته که امکان آبگیری راحت تر صمغ را مسر خاصی و در نتيجة منجر به ایجاد ساختاری با قدرت بیشتر شده است (۲۳). کرنش مناظر با ابتنی ناحیه خطی در سامانه محتوی صمغ کبیری پتروی دیده در ۷۵/۰ کیلوگرمی در مقایسه با سامانه محتوی صمغ کبیری پتروپی نیز تغییری نیک یکدی، اما در سامانه‌های محتوی صمغ کبیری پتروپی‌دهده در دوزهای بالاتر این مقادیر افزایش می‌دهد. مطالعات قبلی محدوده ویسکوالاستیک خطی را منجر با نسبت جزء محلول به نامحلول دانسته‌اند، به‌گونه‌ای که با افزایش این نسبت طول محدوده ویسکوالاستیک خطی نیز افزایش می‌یابد (۹).

اثر پتروپی بر آزمون روش فرکانس آزمون روشی فرکانس در محدوده ویسکوالاستیک خطی که رفرنگ ویسکوالاستیک مواد برگشت‌دهده است، انمای می‌باشد (۲۴). صمغ کبیرای پتروپی‌دهده با ساختاری مشابه اندو بخش تراکتاکنیت (جزء محلول و با وزن مولکولی کم)، و با دورین (اجزاء کم محلول و با وزن مولکولی بالا) سپر اینجکت که دانی در پراکش شده و به بین تریپ در سامانه رفرنگ الاستیک ایجاد می‌کند (۹). به عبارت دیگر امکان عزیر کمتر مولکول‌ها به دانی باوری از بروز وزن‌گرهای ویسکوز در سامانه جلوگیری می‌کند. در پراکش‌های محتوی صمغ کبیرای پتروی دیده در دوزهای
فعال سطحی به واسطه توانایی آن در کاهش کشش سطحی تعیین می‌شود. مطالعات قبیل توانایی صمغ کبیک در کاهش کشش سطحی را با میزان گالکتوز موجود در ساختر مناسب داشته‌اند، به گونه‌ای که گونه‌های با میزان گالکتوز کمتر توانایی کمتری در کاهش کشش سطحی دارند (20). اگرچه حضور صمغ کبیک پروتو نیمه‌هده در براکش، کشش سطحی را کاهش می‌دهد اما پروتوهای تأثیر معنی‌داری بر این کاهش ندارند.

تشرک و قدراین
این مقاول، برگرفته از طرح پژوهشی با عنوان "اثر پروتوهای صمغ کبیک بر ویژگی‌های عملکردی "بوده و نگارنگان از پشتیبانی مالی و اجرایی کمیته پژوهشی دانشجویی و همه عضویان که در انجام این پژوهش مشارکت داشته‌اند، صمیمانه سپاسگزاری می‌نمایند.

References


Effect of Irradiation Treatment on Functional Properties of Gum Tragacanth

Neda Mollakhalili Meybodi (Ph.D) ¹, Mohammad Amin Mohammadifar (Ph.D) ²

¹ Ph.D Students, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
² Corresponding author: Associate Professor, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Introduction: Irradiation is a physical treatment in which products are exposed to ionized radiation such as gamma and x rays to improve the security and quality. Hydrocolloids are components that are used in food science to improve texture properties. Exposing to irradiation treatment may change structural and functional properties. By regard to the importance of irradiation on decontaminating of hydrocolloids in food application, the aim of this study is studying the effect of irradiation at different doses on functional properties of Gum Tragacanth in food application.

Methods: Effect of irradiation treatment was studied on the rheological properties, zeta potential, particle size distribution and surface tension of dispersion systems contained 0.5% w/w gum tragacanth that is irradiated at different doses (0, 0.75, 3, 5 kGy). The effect of irradiation on rheological properties was monitored by rheometer. In order to monitor the effect of irradiation treatment on particle size distribution, zeta potential and surface tension, particle sizer, Brookhaven zeta plus and tensiometer were used respectively. All treatments were performed three times and the data were analyzed by one way ANOVA. Significant differences between means were identified (P values < 0.05) using Duncan test.

Results: Irradiation, change rheological properties and particle size distribution of dispersion contained gum tragacanth. Irradiation treatment up to 0.75 kGy increase zeta potential, but irradiating at higher doses decrease it again. Results of studying parameters showed that irradiation changes the functional properties by affecting on structure. These changes depend on irradiation dose.

Conclusion: Gum tragacanth irradiation may improve the functional properties by affecting on structure.

Keywords: Irradiation, Gum tragacanth, Functional properties
اثر پرتوهای بر دمای و دمای عمیق کنارهٔ صمغ کنارها