کارایی راکتورهای بیوفیلمی برتریک حاوی کالدنس نوع 1 در حذف ترکیبات آلی

و ازنه تحت شرایط محدود اکسیژن محلول از فاضلاب

نویسندگان: علی ظلفرزاده، پژو شیرازی، نیک آقازاده

1. نویسنده مستند: استادانگر گروه مهندسی بهداشتی گیلان - مركز تحقیقات بهداشتی محیط، تلفن: 01171-171-171

Email: alizafarzadeh@yahoo.com

2. استادانگر گروه مهندسی بهداشتی محیط، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی اصفهان

3. دانشیار گروه مهندسی بهداشتی محیط، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی اصفهان

چکیده

ساخته و هدف: یکی از میسرکهای یونیکی ترکیبی نوین که در بررسی فاضلاب حاوی مواد آلی و ازنه Moving Bed Biofilm Reactors (MBBR) برکند می‌تواند، در کنار این فیشی، به روش‌های بیوفیلمی با استفاده از روش‌های با ترکیبات حاوی آکنه (R1)

روش ورسی در این میسرک، با استفاده از جریان و (R2) و هوازی (2011) 3Q دو بار در طول 15-10 لیتر در هر کیلوگرم یونیکی در حجم 15/12 mg/L pH=7.5 و 10 لیتر که در دامی (MBBR) که به ترتیب R1 و R2 به آکنه های 1 به ترتیب 40 و 50 درصد حجمی بود. آنالیز آماری داده ها با نرم افزار excel و spss

یافته‌ها: متوسط غلظت اکسیژن محلول در راکتور هوایی در دوره هره بردازی در دامنه 1/15 mg/l متراز- ناک سی (SCOD) در بارگذاری‌های مختلف (56) ویترشین میزان آن در راکتور یونگیکی حذف شد. راندمان حذف نیترونز در بارگذاری های مختلف (56) در دامنه 99,94-99,92 درصد مختلف و نیتراد راندمان حذف در بارگذاری N/I در دامنه 0,47-0,19/18mg/m3/day

بسته آمپ. نتایج نشان داد که با افزایش میزان بارگذاری ترکیبات از راکتور گیمس ترکیبات از ترکیبات افزایش یافته اما سرعت

افزایش آن در بارگذاری‌های بالا کاهش یافته است. علت آن به احتمال زیاد تغییر به بیرون به روش

MBBR

نتیجه‌گیری: نتایج نشان داد که فرآیند حذف ترکیبات آلی و ازنه از فاضلاب در میسرک به روش

پیش دینورالناکیون، به دنبال برگشت لجن و بدون استفاده از منع کردن خارجی، در شرایط محدود اکسیژن محلول در راکتور هوایی، دارای عملکرد کافی فیلتر جهت تعیین فاضلاب های دارای مقادیر زیاد ترکیبات

ازنه و آلی می‌باشد.

واژه های کلیدی: فاضلاب، ترکیبات آلی و ازنه، اکسیژن محدود، راکتورهای بیوفیلمی با استفای

آکنه (I1)
کارایی راکتورهای بیوفیلمی بستر متحرک (MBBRs) (جایی کالدن، نوع 1 در...

مقدمه

تحقیق برای بهینه‌سازی واحدهای تصمیف فاضلاب بطور همه جانبی ایجاد اعمال استانداردهای زیست محیطی ساخت گیرانه در آینده در حال انجام می‌باشد. مهندسین بر روی ساختاری از واحدهای تصمیف فاضلاب در حال تحقیق هستند که برای جوامع کوچک و محیط‌های حساس قابل بهره برداری و انتقال موثر تصمیف جهت حذف ترکیبات آلی و نیترژن از فاضلاب باشد. (1) یکی از این سیستم‌ها راکتور بیوفیلمی با بستر متحرک است که در اولین دهه 1970 توسعه یافت. راکتور بیوفیلمی با بستر متحرک (MBBR) در نرخ توزه‌ی بافت و پس از آن در اروپا و آمریکا به ثبت رسید. (2) در حال حاضر تعداد زیادی از تاسیسات تصمیف فاضلاب در مقایسه سیستم‌های مورد نظر برای در حال فعالیت در کشورهای مختلف در سراسر دنیا هستند. (3) راکتورهای MBBR نوع کنکمال یافته راکتورهای بستر ثابت و لجن فعال هستند که براساس بیوفیلم تعیین شده و دارای مزیتها و قابلیت‌های فراوانی لجن فعال و هم چنین سیستم‌های متناول بیوفیلم و بکار گرفتن آنها به موانع هم با کانال نهاد معمول هر یک از آنها بود. (4) برخلاف اکثر راکتورهای بیوفیلمی، از نمای حجم تاک یک بایر رشد بیوس استفاده می‌کند. در عین حال این سیستم‌های در ایف هد ناچیزی دارد. در این سیستم برخلاف لجن فعال نیاز به گشت لجن نمی‌باشد. این ویژگی با رشد لجن روی حاملهای بیست می‌آید که ارزیدهان در حجم مایع داخل راکتور حرکت می‌کند. (5) جنس این حاملهای بیوفیلم از پلی اتیلن و با پلی پروپیلن و وزن مشخص آنها در حدود ۱/۹۲ g/cm³ (۱۹۹۰-۲۰۰۰) می‌باشد. و معمولا به صورت جرخه‌ای با اندازه ضخامت

7 و قطر ۱۰ میلی‌متر که درون آنها با یک دیواره ضریبی شکل جهت باز بردن استحکام و افزایش سطح وزه، بر شده است. (۴) انتباهی کم‌کم که داخل سیستم برای کنترل مواد مختلف بطور جداگانه تعیین گردید و باعث انعطاف پذیری زیاد در فضای وزه بیوفیلم شود (۶). جهت حذف بیولوژیکی ترکیبات از مصرف می‌باشد که از این نسبت با کاهش اکسید کننده تریپت (NOB) یا جلوگیری شود. دستیابی به این هدف باز دور خارج کردن این باکتریا با اتعاب درجه حرارت بالا باعث گلاظی اکسیژن محلول بازینی امکان پذیر می‌باشد. (۷) جهت تصفیه فاضلاب‌های شهری احتمال سه‌‌تیرن راه جلوگیری از استفاده از روش بازینی گلاظی اکسیژن محلول می‌باشد. (۸) همان‌گونه که در بالا به اشاره شده ترکیبات از معمولاً بوسیله ترکیبی از دو فرآیند نیتریفیکاسیون و نیتریفیکاسیون از فاضلاب حذف می‌شوند (۹). معمولاً سرعت اکسیداسیون نیتریت بیشتر سرعت از سرعت اکسیداسیون آمونیاک می‌باشد، بنابراین بطوریکه به ندرت ترکیب در محیط اتابکرگی و جمع می‌شود. این احتمالاً ناشی از مقدار گلاظی حذاقل سوئسترا که توانایی حمایت از بیوم زیستی می‌باشد. (۱۰) بنا به این حکم بیولوژیکی میانی نیتریژن یکی از تکنولوژی‌های نوین می‌باشد که آمونیاک را به نیتریت اکسید کرده و نیتریت را به گاز نیترژن بندیل و احیا می‌کند. (۱۱، ۱۲).

کاربرد این فرآیندهای نوین شامل نیتریفیکاسیون جزئی - نیتریفیکاسیون از طریق تجمع نیتریت تحت شرایط محدود
به‌جای آن‌ها طی فرآیند دنیز‌فیکسیون طراحی شده (شکل 1).
کارایی راکتورهای بیولوژیک سست متغیر (MBBRs) خواهی کالبدی نوع 1 در...

هوای مورد نیاز در راکتور هوازی توسط یک کمپرسور هوا ساخت چین و با نصب سه سانتی در کف راکتور نامیده می‌شود. انتقال فاضلاب سنتیک از مخزن تغذیه به انواعی و برگشت داخلی فاضلاب از هوازی به انوکسی DLS توسط دو پمپ تزریق ایتالیایی ETATRON D.S مدل-HEALIA توسط

امتحان می‌شود. در راکتور انوکسی عمل هرمون توسط MA یک همزن الکترکی و گیرنده هر گام‌های جمع آوری pH شدن. درج حرارت، آکسیژن محلول و pH نمونه‌ها از ورودی و خروجی هر یک از راکتورها جمع آوری می‌شود. اکسیژن محلول و pH محکم و DO 55 متر آمریکایی و pH محکم و pH 70 متر احتمالاً اکسیژن و pH محکم و pH 45 متر بلافاصله پس از نمونه برداری اندازه گیری می‌شود. اکسیژن محلول و pH محکم و pH 45 متر بلافاصله پس از نمونه برداری اندازه گیری می‌شود. اکسیژن محلول و pH محکم و pH 45 متر بلافاصله پس از نمونه برداری اندازه گیری می‌شود. اکسیژن محلول و pH محکم و pH 45 متر بلافاصله پس از نمونه برداری اندازه گیری می‌شود. اکسیژن محلول و pH محکم و pH 45 متر بلافاصله پس از نمونه برداری اندازه گیری می‌شود. اکسیژن محلول و pH محکم و pH 45 متر بلافاصله پس از نمونه برداری اندازه گیری می‌شود. اکسیژن محلول و pH محکم و pH 45 متر بلافاصله پس از نمونه برداری اندازه گیری می‌شود. اکسیژن محلول و pH محکم و pH 45 متر بلافاصله پس از نمونه برداری اندازه گیری می‌شود. اکسیژن محلول و pH محکم و pH 45 متر BLENDS (منطقه)

این تحقیق برای تهیه انوکسی با فاضلاب سنتیک دارای نتایج GLM=200 mg/l ادامه می‌شود.

مورد بوده برداری قرار گرفته. در این مرحله از یک گرده و میوه بوده برداری قرار گرفته. در این مرحله از یک گرده و میوه بوده برداری قرار گرفته. در این مرحله از یک گرده و میوه بوده برداری قرار گرفته. در این مرحله از یک گرده و MBBRs

ره بمب برداری در نمونه یک نشان داده است. جهت تعیین کارایی راکتور تحت شرایط اکسیژن محدود، با تغییر

پیش از این مرحله سبکی سم به صورت یوهای از انوکسی به انوکسی با فاضلاب Contineus به عنوان منبع بازهای مختلف

معادل COD دارای 2000 mg/l
SCOD concentration (mg/l) in MBBRs

SCOD concentration (mg/l)

![Bar chart showing SCOD concentration in MBBRs](chart_1)

- **Maximum** SCOD concentration is 2.7 mg/l.
- **Minimum** SCOD concentration is 0.3 mg/l.

Anoxic SCOD loading rate (g SCOD/m².day)

![Graph showing anoxic SCOD loading rate](graph_1)

- **R1** fitting: 85%.
- **R2** fitting: 95%.

Aerobic SCOD loading rate (g SCOD/m².day)

![Graph showing aerobic SCOD loading rate](graph_2)

- **R1** fitting: 85%.
- **R2** fitting: 95%.

SCOD removal efficiency (%)

- **Maximum** SCOD removal efficiency is 95%.
- **Minimum** SCOD removal efficiency is 56%.

Anoxic SCOD removal rate

- **R1** fitting: 85%.
- **R2** fitting: 95%.

Aerobic SCOD removal rate

- **R1** fitting: 95%.
- **R2** fitting: 95%.

Fitting

- **R1** fitting: 85%.
- **R2** fitting: 95%.

MBBRs

- **Minimum and maximum COD removal efficiencies** are shown.

MBBRs in the system (Qr/Q=3)

- **SCOD concentration (mg/l)** range from 0.12 to 2.7 mg/l.
- **TN** concentration range from 25 to 75 mg/l.

Aerobic SCOD removal rate (g SCOD/m².day)

- **R1** fitting: 85%.
- **R2** fitting: 95%.

Anoxic SCOD removal rate (g SCOD/m².day)

- **R1** fitting: 85%.
- **R2** fitting: 95%.

DO concentration (mg/l)

- **Minimum**: 0.04 mg/l
- **Maximum**: 0.42 mg/l

MBBRs

- **Anoxic (R1)**
- **Aerobic (R2)**

Fitting

- **R1** fitting: 85%.
- **R2** fitting: 95%.
MBBRs (Moving Bed Biofilm Reactors) are a type of biological treatment system used for wastewater treatment. They are characterized by the attachment of biofilm onto the surfaces of particles that move through the reactor. The biofilm provides a large surface area for microbial growth and nutrient uptake.

In the context of this document, the focus is on the performance of MBBRs in removing certain pollutants, particularly COD (Chemical Oxygen Demand) and SCOD (Soluble Chemical Oxygen Demand). The text describes the measurement and analysis of these parameters in a biological treatment system.

The text mentions the use of two reactors, R1 and R2, to study the removal efficiency of COD and SCOD. The reactors are operated under different conditions, and the performance is evaluated based on the removal rates and the quality of the treated wastewater.

Overall, the text provides a detailed analysis of the performance of MBBRs in a biological treatment system, highlighting the significance of these systems in modern wastewater management.

The key points covered in the text are:
- Introduction to MBBRs and their role in wastewater treatment.
- Description of the experimental setup and conditions.
- Results of COD and SCOD removal efficiency.
- Analysis of the performance under different operational conditions.

This detailed analysis is crucial for understanding the efficiency and effectiveness of MBBRs in treating wastewater, which is a critical aspect of environmental sustainability.
می‌باشد. بنابراین در راکتور هوازی اکسیژن توسط باکتری‌های اکسی‌بردارنده استرایف و اکسید کننده آمونیوم و نیتروژن جهت فراهم نمی‌شود و هم‌اکنون اثرات این راکتورهای نیتریکاسیون مصرف می‌شوند و حاوی آنزیم اکسیژن بار محسوس می‌کنند. بنابراین دانشمندانگان غلظت‌های پایین اکسیژن محلول بیشتر بر روی نیترویک سیس و سیس نیترویکاسیون می‌باشد، بنابراین تغییر می‌باشد. نیترویک در غلظت‌های پایین اکسیژن محلول مورد انتظار می‌باشد.

تحقیقات انجام شده توسط نینگ و جیانلوئ یون نیترویک، نترویک و واقعیت DO بر عملکرد نیتریکاسیون در راکتور هوازی، نیز مؤید مطالب و تحلیل‌های فوق الذکر می‌باشد.

نمودار 4- روند تغییرات حذف نیتروژن کل (TN) بر اساس میزان پهناوری نیتروژن در شرایط MBBRs

نمودار 5- رابطه بین میزان حذف و غلظت نیتروژن کل ورودی در راکتورهای هوازی، اکسیدکننده و کل سیستم MBBRs
نمودار 6- اثر بارگذاری نیتروژن کل بر میزان حذف آن در راکتور انوکسیک (R1)

ienieودار 7- روند تغییرات راندمان حذف TN (نیتروژن کل) در غلظت های مختلف ورودی (35/7 mg·N/l) در 5 تا 100 mg/l در سیستم MBBRs در مخلوط 1/5 و

بحث و نتیجه‌گیری

علت کاهش روند نیتریفیکاسیون در غلظت‌های بالای نیتروژن ورودی به سیستم را می‌توان اینگونه تحلیل کرد که: این اتفاق ناشی از افزایش حضور آمونیاک آزاد (NH₃) و اسید نیتروژنی در راکتور هوازی می‌باشد. به‌طور معمول در راکتور هوازی می‌باشد به‌طور قابل ملاحظه‌ای میزان نیتریفیکاسیون در آن بالا می‌باشد.

همچنین: علت کاهش سرعت حذف نیتروژن در غلظت بالای امونیوم ورودی به سیستم MBBRs (نمودار 4 و 7)؛ احتمالاً با توجه به صورت قابل توجه پایداری در راکتور انوکسیک طی فرایند نیتریفیکاسیون بتونه دهده الکترون جهت احیای بروز نیتریت و نیترات مورد مصرف قرار می‌گرفت و غلظت کمی از مواد آلی وارد راکتور هوازی شده بود. در غیر اینصورت، در راکتور هوازی فرایند نیتریفیکاسیون کنیا متوقف می‌شد جوین هتروتروفها و نیتریفیکاسیون می‌باشد که آوردون اکسیژن با هم رفت و آمد کرد و رشد سیستم هتروتروفها باعث تضعیف و نابودی نیتریفیکاسیون می‌شود (25).
References

Kaldnes(k1) Moving bed Biofilm Reactors Performance for Organic and Nitrogen Compounds Removal From Wastewater with Limited Dissolved Oxygen

Zafarzadeh A (Ph.D)* Bina B (Ph.D)* Nikaeen M(Ph.D) Movahedian Attar H (Ph.D) Hajian Nejad M(Ph.D)

1. Corresponding Author: Assistant Professor, Department of Environmental Health Engineering, Golestan University of Medical Sciences, Gorgan, Iran.
2. Professor, Department of Environmental Health Engineering, Isfahan University of Medical Sciences, Isfahan, Iran.
3. Associate professor, Department of Environmental Health Engineering, Isfahan university of Medical Sciences, Isfahan, Iran.

Abstract

Background: Moving bed biofilm reactor (MBBR) is one of the new hybrids biological systems that are used in treatment of wastewater contaminated by organic and nitrogen pollutant. In this study, the continuously operated laboratory scale Kaldnes(k1) moving bed biofilm reactors (MBBRs) was investigated.

Methods: In this system, two series as Anoxic reactor (R1) and aerobic (R2) have a size 3.5 and 10 liters, respectively. This system was operated at temperature 28.5°C, pH=7-8, DO= 1-1.5 mg/l and internal recycle ratio in continuously. All tests based on the standard methods were performed. The Anoxic and Aerobic reactors were filled to 40 and 50 % (v/v) to attach and retain biomass with k1 biofilm carriers, respectively. Statistical analysis software was SPSS and EXCEL.

Results: During operation, the average dissolved oxygen in the aerobic reactor was 1-1.5 mg/l. The average removal efficiency of soluble organic carbon (SCOD) was obtained over 95% at different load organic matter (300-2000 mg/l) in the anoxic reactor. The average removal efficiency of total nitrogen (TN) occurred in the range of 80-99.4% at different load nitrogen (25-250 mg/l) and maximum removal efficiency based on biofilm surface area occurred close 92% at loading rate of 0.127-0.181 mg-N/m².day. The results show that nitrification rate was increased to increase loading rate of nitrogen compounds but the rate of nitrification was decreased at high loading rate. Probably this was due to an excessive accumulation of nitrite ion in the aerobic reactor.

Conclusions: This investigation showed that the process of removal organic and nitrogen compounds in the MBBRs system under pre-denitrification without recycle sludge and external carbon source has an acceptable performance for treatment of wastewater with high load organic carbon and organic nitrogen compounds.

Keywords: Wastewater, Organic and nitrogen compounds, Oxygen limited, Moving bed biofilm reactors, Kaldnes (k1).