بررسی مقایسه ای عملکرد حذف ۲-کروکافین و ۳-کروکافین توسط کربن فعال گرانوله و خاکستر سبوس پرنج

نویسنده‌ها: عبدالمحیط فرخزادی، امید کرمی، بیژن میرزا امینی

۱. مرنگ گروه مهندسی بهداشت محیط، دانشگاه علوم پزشکی خراسان شمالی، یزد
۲. استادیار گروه مهندسی بهداشت محیط، دانشگاه علوم پزشکی تهران

Email: gholamim@tums.ac.ir

طنوع بهداشت

چکیده

سابقه و اهداف: آمادگی فعالیت‌های پایدار حضور آلاینده‌های مختلف نظر رنگ‌ها، هیدروکریز

فلوروزنی، ترکیبات فنی و غیره می‌باشد. خاکستر سبوس پرنج یک گذار آراز قلم، جدید و با تولید، قابل

توجه در کشور است و هدف این مطالعه مقایسه کارایی گذار آراز قیمت خاکستر سبوس پرنج و گران

قیمت کربن فعال گرانوله در حذف ۲-کروکافین و ۳-کروکافین از مخلوط‌های آبی است.

روش بررسی: آزمایشات بصورت ناپیوسته با بررسی تأثیر فاکتور‌های نظری pH زمان تمام، ظرفیت قطعه اولیه

ترکیب فنی و دوز گذار و چند انجام شد. سنجش ۲-کروکافین و ۳-کروکافین توسط استخراج قهوه، در

طول موج‌های ۲۷۷ و ۲۸۰ نانومتر اندازه گرفته، همراه با استفاده از عضله ایزوتورم و سیستمیک

صوت ذوب قطعه.

یافته‌ها: حذف هیدروکریز توسط کربن فعال بسته به نوع خاکستر سبوس پرنج و حذف قابل قبول نشان داد. به یکی از ابزاری

قابل حذف و ترکیب روی خاکستر سبوس پرنج ۵ و کربن فعال ۷ به‌دست آمد. جذب با افزایش

ظریفیت آراز، کلیه جذب گذار کاهش یافته مطالعات سیستمیک جذب، بهبود از مدل شی درجه دوم روی

هیدرو گذار را آشکار ساخت. داده‌های ایزوتورم نشان داد کربن فعال این ترکیبات روی خاکستر سبوس پرنج با

مدل فروندلیچ و روز کربن فعال باید ۲-کروکافین با مدل لانگمدورف و ۴-کروکافین با مدل فروندلیچ سازگار

است.

نتیجه‌گیری: حذف آراز گذار قابل قبول و خاکستر سبوس پرنج طریق انجام کار امر انجام می‌شود. با بهبودهای

سازی فاکتور‌های موثر بر جذب از خاکستر سبوس پرنج به‌عنوان جایگزینی کارامد و ارزش قیمت در حذف

کربن فعال فعال ترکیبات فنی استفاده کرد.

واژه‌های کلیدی: جذب، خاکستر سبوس پرنج، کربن فعال، ترکیبات فنی، ایزوتورم حذف
مقیده

ترکیبات فلی در غلظت‌های مختلف از بسیاری از متابولیت‌های نظر

روش‌پژوهشی صنایع تولید زغال، استیمک سایزی، کاغذ،

پلاستیک، پلاستیک‌ها و همچنین تولید روزین های فلی وارد

مجیع زمین می‌گردد(12). این ترکیبات هم چنین می‌تواند

به وسیله تجزیه آفت کش های کلره از واکنش آپ با فن

موجود در مجیع و در طول سوزاندن مواد آلی در حضور کلر

تولید شوند(3). حلالات ترکیبات فلی به نوع ماده استیمکی دارد.

برای مثال حلالات فل غیر اشاعه در آب 7.6 گرم در لیتر و 2-

کلروفن 20 گرم در لیتر است. با توجه به وزن‌های فل نظر

حلالات در آپ و پایداری آن در مجیع زمین، این ترکیبات

به مدت طولانی در مجیع باقی مانده و از طریق متابولیت آپ قادر

به انتقال نسبت‌های طولانی هستند(4).

این ترکیبات به طور مسیت و تجزیه ناپذیر، حتی در غلظت

های بالینی به عنوان آلاینده‌های دارای اولویت زیست محیطی

شناخته می‌شوند(5). که سبب وضع استفاده‌های سختگیرانه

ای برای آنها شده است. آزمایش حفاظت بیماری آمریکا

(EPAL) برای این ترکیبات، استاندارد

1.5 میلی‌گرم/L 1. ارائه داده است(6). بنابراین، فاضلاب های آلوهده به ترکیبات فلی باید قبل

از تخلیه به مدتی بی‌پرینه تصفیه گردد.

تیزی بیولوژیکی، استخراج در حالا، اکسیداسیون شیمیایی و

روش‌های الکتروشیمیایی مهمان روش‌های حذف فل و

ترکیبات فلی از فاضلاب هستند(7). مشکلاتی نظر هزینه بالا،

راندمان پایین و تولید محصولات جانبی سرم و خطرات

فاکتورهای محدود کننده برای کاربرد بخشی از این روشن‌ها

همنند. در میان فراوان‌ترین فیزیکوشیمیایی تکنولوژی جذب به

بوضوح اینکه کردن فعالیکی از جاذب های سطحی بسیار

متداول و شناخته شده می‌باشد. ولی بدلیل هزینه های بالای تهیه

آن و تیاز به صرف هزینه بالا جهت اجراه امر آن (6) تلاش شده

است تا از جاذب‌های ارزان قیمت و طبیعی از قبل

بانونیت(12)، بوضت هسته کاتاوجو(13)، غشاوه و بوضت تخم

مرغ، جیتروان(14) و بی‌همان حذف آلاینده های آلای

طرح وسیعی در حدود سال‌های جدید مطالعه قرار گرفته

است(9). جذب سطحی تکنیکی مناسب و قوی برای تصفیه

پس‌های خانپویان و صنعتی می‌باشد. جذب سطحی فرایندی است

که طی آن مولکولهای ماده جذب شوند موجود در یک

محلول به است ضروری داخلی یک ماده جاذب کشیده شده و

تجمیع می‌یابند. این فرایند روشن‌سازه، اقتصادی، سریع و بدون

هیچ تصفیه و ماده شیمیایی می‌باشد(10). به دلیل محدودیت

های نظر مشکل دسترسی، نداشتن راندمان بالا و غیره، تمامی رو

به رشد در استفاده از جاذب های آسان و با کارایی بالا

در جذب وجود دارد(5).

جاذب های زیادی برای حذف فن در و کلروفن ها از فاضلاب

مورد استفاده قرار گرفته است. در این گونه یکی از ماده‌اندیس‌های

آلی، میکرومولکولهای، رنگ، طعم و بو مورد استفاده قرار می

گیرد. کردن فعال بسیار منظم و آلاینده های آبی در

آب/ میکرومولکولهای، و و معمولاً میزان تخلخل

آن 1/5 cm³/g در پنجه خاکستر آن حداقل 5 درصد

و دارای سایز ذرات 3-5 میلی متر است(10). از این جاذب در

پیشتر تصفیه خانه های مختلف دنها به صورت مقطع و

فصلی برای کنترل طعم و بو ترکیبات آلی استفاده می

شود(11).

باوجود اینکه کردن فعالیکی از جاذب‌های سطحی بسیار

متداول و شناخته شده می‌باشد. ولی بدلیل هزینه های بالای تهیه

آن و تیاز به صرف هزینه بالا جهت اجراه امر آن (6) تلاش شده

است تا از جاذب‌های ارزان قیمت و طبیعی از قبل

بانونیت(12)، بوضت هسته کاتاوجو(13)، غشاوه و بوضت تخم

مرغ، جیتروان(14) و ... به منظور حذف آلاینده های آلای
استفاده شود. بنابراین استفاده از سیسوس برینج به صورت خاکستر جهت جذب سطحی آلانده‌های آتی به دلیل دسترسی به مواد ارزان قیمت و بومی اقتصادی بوده و با کاهش حجم می‌تواند مشکل دفع آن را تا حدودی کاهش دهد (6). طبق سوابق تحقیق محواکس بالای سیلیکا (تقریباً 20%) به آن قدرت جذب زیادی می‌دهد (12).

بنابراین هدف از مطالعه حاضر، مقایسه کارایی خاکستر سیسوس برینج به عنوان یک جذب در دسترس و ارزان قیمت با کرین فعال گرین‌ولو به عنوان یک جذب تجاری در حذف 2-کلوروفن و 4-کلوروفن از محلول آبی است. در این پژوهش، تأثیر فاکتورهای مختلف نظیر زمان تراس، pH اولیه، غلظت اولیه آلانده و دوز جذب روی میزان جذب مطالعه گردید. سپسکی جذب با استفاده از مدل‌های شیمی‌ای اولیه و دوم و تنوع درون ذره ای تحلیل گردید. مهم‌ترین مدل‌های جذب لانگومور و فراندلیج برای آنالیز معادله جذب استفاده شد.

روش بررسی

این مطالعه از نوع تجربی بوته که در آن کارایی جذب‌های خاکستر سیسوس برینج و کرین فعال در جذب محلول‌های استیتیک 2-کلوروفن و 4-کلوروفن مورد بررسی قرار گرفته است. خاکستر سیسوس برینج، از منطقه شمال ایران و کرین فعال تجاری ساخت شرکت آلمن مورد استفاده قرار گرفتند. آزمایشات در مام پمارال کار صورت نوبت به‌روی یک همزمان خرچنگ (شیک) و در دمای آزمایشگاه (C) با pH متوسط محلول های مورد آزمایش (pH 5-7) آنالیز شد. مقدار pH متوسط محلول‌های مورد آزمایش توسط استیم کلیپر در پیک (pH) متر مدل HQ40d, USA.
بررسی مقایسه ای عملکرد حذف 2-کلروفنل و 4-کلروفنل توسط کربن فعال گرانوله یکی که ضریب سنتیک شبه درجه دوم است.

t = \frac{1}{q} + \frac{1}{q_e} \tag{4}

جذب ممکن است به وسیله فراندلی نفوذ درون ذره ای نیز کنترل شود که به صورت زیر است:

\[q_t = k_p t^{1/2} + C \tag{5} \]

که ثابت سرعت نفوذ درون ذره ای بر حسب \(K_p \)

ثابت نفوذ درون ذره ای است.

مدل های ایزوترومی بای شکل داده های تجربی و توصیف تعادل در جذب مانند 10، فراندلیچ و تکنیک وجود دارد. این مدل ها برای نمایش دیدگاهی راجع به مکانیزم جذب، خواص سختی، تقابل جاذب و توصیف داده های تجربی جذب به کار می‌روند(21).

ایزوتروم فراندلیچ با فرض یک سطح ناهمگن با توزیع غیر یکنواختی از گرمای جذب در روی سطح بدست می‌آید. طبق مدل فراندلیچ فراندلی نفوذ توسط معادله زیر تعریف می‌شود:

\[\log(q_{eq}) = \log(K_p) + \frac{1}{n} \log(C_{eq}) \tag{6} \]

که در آن \(K_p \) ثابت نفوذ مایع در غلظت واحده، \(C_{eq} \) مقدار مایع در غلظت تعادل بر حسب میلی گرم بر لیتر \(C_0 \) مقدار مایع در غلظت تعادل است که اگر \(\frac{1}{n} \) به‌صورت جگ‌کننده فراندلی است مشابه مایع نامطلوب و \(b \) بیرگنگ ناب‌پایی، \(0 < b \) باشد فراندلی نامطلوب و \(b \) بیرگنگ ناب‌پایی، \(0 < b \) باشد فراندلی نامطلوب است(22).

برحسی میلیگرم ماده فلی در گرم جاذب، \(C_0 \) و \(C_1 \) به ترتیب غلظت اولیه و غلظت ماده فلی در زمان \(t \) بر حسب میلی گرم بر لیتر، \(V \) حجم محلول بر حسب لیتر و \(M \) جرم جاذب بر حسب گرم می‌باشد(17):

\[q_{eq} = \frac{(C_0-C_1)V}{M} \tag{1} \]

\[R = \frac{(C_0-C_1)}{C_0} \tag{2} \]

به منظور تحلیل و تعیین مکانیزم کنترل فراندلی جذب سطح مانند جذب در سطح، واکنش شیمیایی و یا مکانیزم غلظت اولیه و جذب 2-کلروفنل و 4-کلروفنل روی خاکستر سیسیس برنج و کربن فعال، مدل های سنتیک شبه درجه اول، ثابت در دوره و نفوذ درون ذره ای مورد استفاده قرار گرفته است.

در مدل سنتیکی مربوط اول فرض یک این است که سرعت تغییرات برداشت جسم حاصل شونده با زمان به طور مستقیم مناسب با تغییرات در غلظت اشباع و مقدار برداشت جاذب با زمان می‌باشد. قریب خیلی سنتیکی مربوط اول به صورت زیر نشان داده می‌شود(18):

\[\ln(q_{eq} - q) = \ln q_{eq} - \frac{K_p t}{2303} \tag{3} \]

\(q \) و \(q_{eq} \) مقدار 2-کلروفنل با 4-کلروفنل جذب شده به ازای هر گرم جاذب در زمان \(t \) در حالت تعادل است. \(K_p \) ثابت سنتیکی مربوط اول است.

اما در مدل سنتیکی مربوط دوم فرض بر این است که فراندلی جذب قابل کنترل به وسیله جذب شیمیایی است. فرم خطی سنتیکی مربوط دوم برای جذب 2-کلروفنل و 4-کلروفنل بر روی خاکستر سیسیس برنج و کربن فعال به صورت زیر است(16):

\[q = \frac{C_0-C_1}{C_0} \tag{5} \]
نتیجه‌ی آزمایش‌هایی که با توجه به تغییرات مطالعه‌گردد، به عنوان مثال، نتایج بندی به آنالیز آماری نداشتند. داده‌های بدست آمده از مراحل مختلف آزمایشات و نتایج حاصل از آنالیز نمونه‌ها جمع آوری شده و سپس پارامترهای اندام‌های گیری به کمک نرم‌افزار Excel تجزیه و تحلیل قرار گرفت.

یافته‌ها

نتایج زمان نمای بر جذب 2-کلورولفن و 4-کلورولفن روی کرین (GAC) و با استفاده از تابکسپرس بینتر مکسیموم، مقدار بالاتری با پایین تری بهینه منجر به کاهش جذب 2-کلورولفن و 4-کلورولفن در pH هر دو جاذب شد.

![نمودار زمان نمای بر جذب 2-کلورولفن و 4-کلورولفن روی کرین (GAC) و با استفاده از تابکسپرس بینتر مکسیموم](downloaded_from_tbj.ssu.ac.ir)
جریان خاکستر سیس بر روی کربن بالا، مربوط به میزان مکانیکی جذب بیشتر و مساحت سطح بیشتر در دوزهای بالاتر است.

نتایج نشان دهنده این است که بهترین گونه ای که با افزایش pH تغییرات راندمان جذب افزایش گرفت این از 50 میلی گرم در لیتر به 400 میلی گرم در لیتر.

قیمت pH های مختلف محلول بر ظرفیت جذب 2-کربون فیل 4-کربون فیل روی جذب های کربن فعال و خاکستر سیس بر روی جذب 2-کربون فیل 4-کربون فیل خاکستر سیس بر روی جذب 2-کربون فیل 4-کربون فیل
شکل ۳: تأثیر غلظت های مختلف ۴-کلوروفنل و ۲-کلوروفنل بر روی جذب خاکستر سیوس برنج و کربن فعال (زمان پیهنه، pH)

شکل ۴: تأثیر دوزهای مختلف جاذب های کربن فعال و خاکستر سیوس برنج (زمان پیهنه، pH و C۰=۵۰ mg/L در ۴۰ میلی لیتر)
جدول 1: انطباق داده های تعدادی با مدل های لانگمور و فرندلیج

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مدل لانگمور</th>
<th>مدل فرندلیج</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>R_L</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>b (l/mg)</td>
<td>5.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Q^* (mg/g)</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

جدول 2: انطباق داده های بدست آمده با مدل های سنتیک جذب

<table>
<thead>
<tr>
<th>شاخص</th>
<th>مدل لانگمور</th>
<th>مدل فرندلیج</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>R_L</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>b (l/mg)</td>
<td>5.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Q^* (mg/g)</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری

نسبت به 4-کلروفین مقدار جذب کمتری نشان داد. احتمالاً چنین رفتاری به دلیل حلالیت کمتر 2-کلروفین نسبت به 4-کلروفین و کربنی که کلر آن قرار گرفته است می‌باشد. (5).

در ابتدای فراوری جذب مکانهای جذب فرآیند در دسترس است و پس از 2-کلروفین و 4-کلروفین به آسانی در این مکانها جذب می‌شود. در مطالعه‌های قبلی نشان داده شد که حذف ترکیبات فنی با استفاده از یکی از جاذب‌های طبیعی انجام شد. زمان 60 دقیقه بدست آمد و 2-کلروفین رفتار می‌نماید.
کلروفنل ها اشتعال شده و میزان کلروفنل ناپایا مانده در محلول بالا است. نباترین یا افزایش دور جدید بیماری جذب بینهای کلروفنل ها افزایش یابد. در میزان جذب 1/2 گرمی میزان حذف بسیار پایین بوده و تعداد سریع تر حضور pH

نتایج و همکاران (10) و Kermani. M Bayramoglu Gulay مشاهده که در مطالعات Bayramoglu Gulay (5) به‌دست آمد، درستی این ادعای را نشان می‌دهد.

در ایزوتروم های جذب، مقادیر ثابت لاگریسی C_{eq} در مقابل C_{eq} و مقادیر ضریب همبستگی R^2 (آن بسته آماده‌گذاری) افزایش یابد. مقادیر ضریب به logC_{eq} از نمودار خطي logI/n و کر افزایش ضریب همبستگی آنها نیز داده شده است. ثابت فورنلیج نزدیک به مقادیر واحد است که نشان می‌دهد که مقادیر جذب تحت شرایط آزمایش مناسب است. همانطور که درک شد فاصله جذب 2-کلروفنل و 6-کلروفنل روی خاکستر کربنی فعال گرانوله به ترتیب با مدل لانگومور و فورنلیج تناسب دارد. این امر می‌تواند به دلیل توزیع یک‌پتولی این جذب که به‌دست آمده می‌باشد (41). علت افزایش ظرفیت جذب جذبک‌ها با افزایش میزان کلروفنل به دلیل افزایش احتمال برخورد و تنصیب بین جاذب و جاذب شونده می‌باشد (10).

با افزایش غلظت ترکیب فلزی، درصد حذف آن کاهش می‌یابد. در غلظت‌های کم، میزان 2-کلروفنل و 6-کلروفنل در مقایسه با میزان موجود بر روی سطح جاذب کمتر می‌باشد اما با بالا رفتن غلظت ترکیب فلزی در محلول، میزان موجود بر روی سطح جاذب بسیار کمتر شده در نتیجه درصد جذب کاهش می‌یابد (51). علت افزایش ظرفیت جذب جذبک‌ها با افزایش غلظت اولیه کلروفنل به دلیل افزایش احتمال برخورد و تنصیب بین جاذب و جاذب شونده می‌باشد (10).

نتایج مشاهده در مطالعات خود بدست آورده.

از افزایش جذب با افزایش میزان کلروفنل مرطوب به میزان مکان‌های جذب بیشتر و ساحقه سطح بیشتر در مقادیر بالاتر است. در مقادیر خنثی باین جاذب، سطح جاذب به سرعت با پون های

مراجع

15. Eugenia Rubin (14) Nadavala Siva Kumar
References

Comparative Investigation of 2-Chlorophenol and 4-Chlorophenol Removal Using Granulated Activated Carbon and Rice Husk Ash

Gholizadeh A (Ms.c)¹ Kermani M (Ph.D)² Gholami M(Ph.D)³ Farzadkia M(Ph.D)⁴
1. Instructor, Department of Environmental Health Engineering, North Khorasan University of Medical Sciences, Bojnurd, Iran
2. Assistant Professor, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
3. Corresponding Author: Associated Professor, Tehran University of Medical Sciences, Tehran, Iran
4. Associated Professor, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: Industrial wastewaters contain organic pollutants such as dyes, halogenated hydrocarbon, phenolic compounds and so on. Rice husk is a cheap material which is now available in our country. The aim of this study is removal efficiency comparing rice husk ash performance with commercial granulated activated carbon in removal of 2-CP and 4-CP from aqueous solutions.

Methods: Experiments were carried out in dual laboratory-bench scale to evaluate the effect of factors including adsorbent dosage, pH, equilibration time and phenolic compound concentration regarding the effect of selected pollutant adsorption for removing this phenolic compound and comparing these methods. Spectrophotometric measurements were carried on in wavelengths of 274 and 280 nm for 2-chlorophenol and 4-chlorophenol respectively. The adsorption parameters were determined using both of isotherm and kinetic models.

Results: The Results showed that the activated carbon efficiency for selected compounds was rather more than rice husk ash. However rice husk ash (RHA) efficiency for these compounds was comparable with activated carbon. It was shown that a rapid equilibration could be achieved at pHs as low as 5 and 7 for RHA and GAC, respectively. The adsorption efficiency decreased with increasing the initial phenolic concentration and decreased with decreasing the adsorbent dosage. The adsorption isotherm studies clearly indicated that the adsorption process is on surface of RHA and fits into the Freundlich model. Also GAC adsorption isotherm for 2-Chlorophenol fit into the Langmuir isotherm and for 4-chlorophenol fit into Freundlich model. The applicability of Ritchie, pseudo first order and pseudo second order kinetic model was also been investigated. It was indicated that both methods were correlated with pseudo second order kinetic model.

Conclusion: Activated carbon and RHA exhibit reasonable adsorption capacity for the phenolic compounds and as to the results, RHA was found to be a useful agricultural waste product for the removal of some phenolic compounds.

Keywords: Adsorption, Rice husk ash, Activated carbon, Phenolic compounds, Isotherm