در سایه‌های نوری، هرگاه یک دستگاه بزرگ حجمی و شکل عینی داشته باشد، می‌تواند بتواند در جایی دیگر قرار گیرد که سیستم‌ها و مدارهای مقابله‌ای در آنها نور را در ابعاد مختلفی از قلمروی خود در اینجا توزیع کنند. با این حال، در هر چگونه‌ای، دستگاه‌هایی که دارای مقابله‌ای نور به‌اختیار هستند، باید از طریق یافتن در یک دما که باعث افزایش ارتفاع می‌شود برای این منظور استفاده گردد. البته، برای اینکه آنها برای استفاده در مقایسه با دستگاه‌های دیگر بتوانند، لازم است که تعدادی از آنها در دستگاه‌هایی مهم که حاوی چنین امکاناتی هستند قرار بگیرند و به‌عنوان یک سیستم مجزا از آنها به‌کار رود. اما، در خصوص سیستم‌های وسیعی که حاوی دستگاه‌هایی با دیجیتال می‌باشند، برای اینکه آنها را در مقایسه با دستگاه‌های دیگر بتوانند، لازم است که تعدادی از آنها در دستگاه‌هایی مهم که حاوی چنین امکاناتی هستند قرار بگیرند و به‌عنوان یک سیستم مجزا از آنها به‌کار رود.
پیشرفت علم و صنعتی شدن جوامع سبب تولید آنلایند های مختلفی گردیده که با ورود به محیط زیست انسان بیوزده در منابع آبی باعث کاهش کیفیت آن شده است (12)، وجود ترکیبات شیمیایی چیزی در مقداری کم در صورتی که بیش از مقداری تعبیه شده در استانداردهای جهانی یا موجب مسمومیت انسانها و نهایتاً مرگ و میر می‌شود. با تشکیل توزیع آب شیرین با فشاری و واردات غلیظ مقدار آب کافی که مناسب آب را نیز تشکیل می‌دهد که کاملاً خالص در طیف‌های یافته نشود، حتی زمانی که در آب در هوا به صورت تبدیل می‌شود وارد جامدات، نمک‌ها و گازها مخلوط می‌گردد. آب هنگام پذیرش مواد مختلف را از هوا زدوده و به‌همراه به زمین نزدیک تر می‌شود. آنلایند (1) می‌تواند به این ترتیب که از لوله‌های آهی و فولودی تشکیل شده است، حتی با تاثیر خورشیدی قرار می‌گیرند (13). خورشیدی بطور عادی بهداشتی است که در اثر نیاز مواد خوراکی به محیط اطراف به وجود می‌آید. خورشیدی در اثر فرسایش و فرآیند الکتروشیمایی افتاده می‌شود (14). عوامل فراوانی از جمله، ویژگی‌های آب، نوع فلزه‌ای کار رفته در ساختاری که pH آب، میزان کلر بالا می‌باشد، سختی، درجه حرارت، کل جامدات محلول، فلاینت، استیله، وجود میکروگانیسم‌ها، نمک‌های محلول (بیکنر، کریمه، سولفات کلسیوم، گازهای محلول در آب) دی اکسید کربن، کسیکس، مدت زمان تعاس با آب و نزدیک جریان از عوامل تاثیر گذار در ایجاد و گسترش خورشیدی در سیستم است. (15) از جمله ممدال ترین شاخص های تعبیه‌های غیرخوارش خورشیدی اندیس‌های زیرالنلزیر، رایزنار، پوکوریوس، تهاجم و لارسون - اسکولون می‌باشد. در مطالعه ای که کوست در سال ۲۰۰۸ اثر اکلیم و Agatemor انجام شد و برای پیش بینی مشخصات خورشیدی و روستاگرایی آب، شاخص‌های زیرالنلزیر و رایزنار را مورد بررسی قرار دادند. نتایج این پژوهش نشان داد که آب مورد بررسی خاصیت خورشیدی داشت (10). مطالعات انجام شده در ایران مورد تحقیق و بررسی‌های زیمینی، آب آشامیدنی، شهر اهواز در سال ۱۳۸۷ و بیش از علم در سال ۱۳۸۲ بر پناسیل خورشیدی و روستاگرایی آب آشامیدنی شاخص‌های توزیع شهر شیار و قاره‌ن‌های نقش در سال ۱۳۸۷ بر پناسیل خورشیدی آب آشامیدنی و بهداشتی مورد استفاده در شیمیابی‌ها و دوگانه بخش خاکی از توابع استان زند نشان داد که آب موجود در این شیب‌های دارای خاصیت خورشیدی ی بودند (15). مطالعات انجام شده توسط دهفته‌ای در سال ۱۳۸۹ بر پناسیل خورشیدی با روستاگرایی آب آشامیدنی شاخص‌های توزیع شهر شیار و قاره‌ن‌های نقش در سال ۱۳۸۷ بر پناسیل خورشیدی و روستاگرایی آب آشامیدنی و بهداشتی مورد استفاده در شیمیابی‌ها و دوگانه بخش خاکی از توابع استان زند نشان داد که آب موجود در این شیب‌های دارای خاصیت خورشیدی ی بودند (15). مطالعات انجام شده توسط دهفته‌ای در سال ۱۳۸۹ بر پناسیل خورشیدی با روستاگرایی آب آشامیدنی شاخص‌های توزیع شهر شیار و قاره‌ن‌های نقش در سال ۱۳۸۷ بر پناسیل خورشیدی و روستاگرایی آب آشامیدنی و بهداشتی مورد استفاده در شیمیابی‌ها و دوگانه بخش خاکی از توابع استان زند نشان داد که آب موجود در این شیب‌های دارای خاصیت خورشیدی ی بودند (15). مطالعات انجام شده توسط دهفته‌ای در سال ۱۳۸۹ بر پناسیل خورشیدی با روستاگرایی آب آشامیدنی شاخص‌های توزیع شهر شیار و قاره‌ن‌های نقش در سال ۱۳۸۷ بر پناسیل خورشیدی و روستاگرایی آب آشامیدنی و بهداشتی مورد استفاده در شیمیابی‌ها و دوگانه بخش خاکی از توابع استان زند نشان داد که آب موجود در این شیب‌های دارای خاصیت خورشیدی ی بودند (15).
به منظور جلوگیری از تغییرات در غلظت دی اکسید کربن، pH و درجه حرارت آب، با استفاده از دستگاه پرتابلا با مدل KARIZAB در محل نمونه برداری اندازه گیری شد. سایر مشخصات کیفی آب شامل قیمت، غلظت کلسیم و منیزیم در آزمایشگاه ادغام گیری شد. کلیه مواد شیمیایی مورد استفاده دارای درجه خلوص آزمایشگاهی و ساخت کارخانه مركشدیداری شد. آزمایشات بر اساس روش‌های مندرج در کتاب استاندارد روش‌های آزمایش آب و فاضلاب انجام شد (17). داده‌ها با استفاده از آمار توصیفی تحلیل گردید.

شاخه‌های لازلیور، رایزنی، پُرکوریوس و تهاجم با استفاده از معادلات جدول 1 محاسبه شد.

نتایج

1. توزیع نفاط نمونه برداری از شیبه اب مصرف در سطح شهر کرمان

![نقشه شهر کرمان](image.png)

شکل 1: توزیع نفاط نمونه برداری از شیبه اب مصرف در سطح شهر کرمان
جدول 1: معادلات مورد استفاده برای محاسبه شاخص خوردگی و رسوپ گذاری

| شاخص | معادله | معادله
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ولیژ</td>
<td>(LI = \rho H - \rho H_c)</td>
<td></td>
</tr>
<tr>
<td>رایزنگر</td>
<td>(RI = 2 \rho H - \rho H_c)</td>
<td></td>
</tr>
<tr>
<td>پوکوربوس</td>
<td>(PSI = 2 \rho H - \rho H_{eq})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[Al = \rho H + \log[(Ca^{2+}) \times (Alk)] \]

تاهاج

یافته‌ها

در نمودار 2، که با استفاده از میانگین هر پارامتر اندازه‌گیری شده، شکل توزیع آب شرب کروم آماده است. هم‌اندازه‌کردن که مشهود است به روشی با استفاده از نمودار 3، نشان دهنده تفاوت بین 8 ردیف حاصل از (CaCO₃) و 3 ردیف حاصل از سطحی کلی از دو عامل دانه و سختی نمونه، قلیانیت و pH داده شده است. براساس نتایج پیش‌ترین مقدار کل جامدات محلول سختی کلی، سختی دانه و سختی موی، قلیانیت، دما و pH اندام‌های گیاهی شده به ترتیب برابر ۴۱، ۵۴، ۹۸۳ و ۱۲۳ و pH محدود سختی کلی و سختی موی، قلیانیت، دما و pH به ترتیب برابر ۲۰، ۵۴، ۴۳ و ۵۰، همکنون مقدار کل جامدات محلول سختی کلی به ترتیب برابر ۸۷، ۸۲ و pH گیاهی شده می‌باشد. میزان متوسط ساخت‌های اندازه‌گیری شده در شکل ۲ به ترتیب ۸۲، ۷۳ و ۶۳ mg/L بود که در رديف آنها خیلی سخت قرار می‌گیرد. این آب برای مصرف خاص صنعتی ممکن است مشخصی کمتر از آب‌های پیش‌نمونه دارای کمیت کلیسی بود که در دیدگاه آنالیز پارامترهای اندازه‌گیری شده شیمیایی آب شرب با رهیم‌های ایرانی سازمان جهانی بهداشت و استاندارد ایران نشان می‌دهد که در هیچ موادی از حدود مجاز تجاوز نموده است (۲۴).
شاخص پوکریوس این امکان فراهم شده است که رابطه بین وضعیت فوق اشباع آب و رسوب‌گذاری با توجه به دو پارامتر مذکور بررسی شود. در این شاخص به جای استفاده از pH_{eq} به نشان داده، اکتوپه تعداد پروتئین استفاده می‌شود (20). در شکل‌5 وضعیت مقدار شاخص پوکریوس نسبت به خط تعادل در شیشه توزیع آب شهر کرمان داده شده است. این اندیس نشان می‌دهد اگر LS کمتر از 10 آب به شدت خورنده، LS بیش از 12 غیر خورنده (رسوب‌گذاری) است، با توجه به این منحنی بیش از 90٪ نمونه ها دارای کیفیت آب رسوب‌گذار هستند.

شکل ۲: تغییرات میانگین غلظت کل جامدات محلول، سختی کل، سختی دائم، سختی موقعیت، قلبیت و pH در ایستگاه های نمونه برداری در مدت آزمایش
شکل 3: وضعیت مقادیر شاخص لاژنر لیست به خط تعادل در شبکه توزیع آب شهر کرمان

شکل 4: وضعیت مقادیر شاخص رایزنر نسبت به خط تعادل در شبکه توزیع آب شهر کرمان

شکل 5: وضعیت مقادیر شاخص تهاجم نسبت به خط تعادل در شبکه توزیع آب شهر کرمان
بحث و نتیجه‌گیری

پایش کیفیت شیمیایی آب از نظر تعادل شیمیایی (خورنده‌گری و رسوب‌گذاری) و پیشگیری از پیده‌های خورنده‌گری و رسوب‌گذاری که باعث آسیب‌های بهداشتی و اقتصادی فرآیند می‌شود بسیار مهم است. بررسی‌های نشان داده که در کشور ایران، مقادیر قابل توجهی از آب در اثر نشان از شیب‌های توزیع هدر می‌روند. میزان هدر رفت آب در برخی از کشورها نظیر ایران بیش از ۲۰/۰۷/۰۲ است. (۱۵) پایش کیفیت شیمیایی آب و کنترل آن را افزایش عمر مفید تأسیسات آبی‌رسانی و بهبود کیفیت نموده و احتمال نشان و هدر رفت آب را کاهش می‌دهد. (۱۴).

همچنین پایش کیفیت شیمیایی آب و کنترل تعادل آن می‌تواند منجر به افزایش عمر مفید تأسیسات آب‌رسانی شده و احتمال نشان و هدر رفت آب را کاهش دهد. این الزامات در کشورهای می‌کند که باید از اهمیت بسیار بالایی برخوردار است. از طرفی ایجاد رسوب در جداسازی لوله‌ها نیز از مسائل مهم است که کسب ایجاد افت‌شمار در سیستم‌های توزیع شده و علاه بر نارضایتی مصرف‌کنندگان باعث تحمیل هزینه‌های زیاد بپذیرد. برای سیستم‌های توزیع خواهه شد (۱۵).

با توجه به نتایج حاصل از نموده‌برداری از آب شیکه توزیع شهر کرمان، انتخاب محاسبه‌شده اشتباه لازم‌الزمان، رایزنی پوکوروس و تهیه‌ساز مورد تجزیه و تحلیل قرار گرفت (۵۲/۴۲۷). نتایج نشان داد که آب شیکه توزیع شهر کرمان دارای خاصیت رسوب‌گذاری است. نتایج حاصله از مطالعه حاضر مغزاب با تابع حاصل از مطالعات Okolo و Agatemor در سال ۲۰۰۸ (دریجه ۲) و مطالعات انجام شده Kalwania و Shyam
References

6- Loewenthal RE, Morrison I, Wentzel MC. Control of corrosion and aggression in drinking water systems. The 1st IWA Conference on: Scaling and Corrosion in Water and Wastewater Systems. 2003; Cranfield University, UK; 100-210.

20- Pishnamazi SA. The water and it’s corrosion in industry with analysis of corroded samples. Isfahan Arkan publishing;1998:50-198.

23- Institute of Standardsand Industrial Research of Iran. Drinking water - physical and chemical specifications. ISIRI No: 1503. 1997.[Persian]

Investigation of Corrosion Potential and Precipitation Tendency of Drinking Water in the Kerman Distribution System

Malakootian M (Ph.D)¹ Fatehizadeh A (Ph.D)² Meydani E(BS.c)³

1. Corresponding Author: Professor, Department of Environmental Health, and Environmental Health Research Center and Kerman University of Medical Sciences, Kerman, Iran
2. Ph.D Student, in Environment Health, Isfahan University of Medical Sciences, Isfahan, Iran
3. BS.c Environment Health, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Background: Occurrence of corrosion and deposition in drinking water in distribution system can lead to economic and health damages. The aim of this study was to investigate the corrosion and precipitation potential of drinking water in Kerman distribution system.

Methods: This cross-sectional study was performed from September to November of 2011. For determining the chemical quality of Kerman drinking water, 40 samples with 2-4 L were taken in glass container and then were analyzed. The physical and chemical quality of samples was determined and the potential of corrosion and precipitation of waters were analyzed in terms of four corrosion indices, i.e., Langelier Index (LI), Ryznar Index (RI), Pockorius Index (POI) and Aggressiveness Index (LS). The test methods were adopted from “standard methods for water and wastewater examination” and the obtained data were analyzed with description parameters.

Results: Based on the results, chemical quality of water in Kerman Distribution system was under the Iranian national standard and WHO guideline. The results showed that the LI index for >90% was above zero and RI index indicated that >82% of samples was below 7. According to POI and LS index, the deposition rate was 60 and 90%, respectively. By survey of LI, RI, POI and LS indexes, it was found that Kerman distribution system water has scaling (precipitation) potential.

Conclusion: The chemical quality of Kerman distribution system water is imbalance thus resulting in the scale formation in water distribution system and other equipments. In addition, to stop economical loss the planning for water quality stabilization is necessary.

Keywords: Corrosion, Precipitation, Distribution system, Water quality, Kerman city