پاکسازی زیستی آب های آلوده به نفت خام توسط باسیلوس‌های جدایی از حوضچه های نفتی
نویسنده‌گان: فریده محمدی و عباس نحوی‌سپهی
فائزه محمدی
مصنفان امینی

طلوه بهداشت

صفحه و هدف‌ها: آب های آلوده به نفت خام در بالا‌پاش سطح افتخارات شد. نمونه
بررسی برای این منظور از آب های آلوده به نفت خام می‌تواند MSMS کشت داده شد و به آن
10000 ppm نفت به عنوان نهایی کریتیکی کشت در روزی محیط کشت داده شده و به آن
کریتیکی با کنترل‌های اضافه شد. دریافت دوره 35 و دما 150 rpm منع
کریتیکی با کنترل‌های اضافه شد. دریافت دوره 35 و دما 150 rpm منع
کریتیکی با کنترل‌های اضافه شد. دریافت دوره 35 و دما 150 rpm منع

روش بررسی: برای این منظور از آب های آلوده به نفت خام در بالا‌پاش سطح افتخارات شد. نمونه
بررسی برای این منظور از آب های آلوده به نفت خام می‌تواند MSMS کشت داده شد و به آن
10000 ppm نفت به عنوان نهایی کریتیکی کشت در روزی محیط کشت داده شده و به آن
کریتیکی با کنترل‌های اضافه شد. دریافت دوره 35 و دما 150 rpm منع
کریتیکی با کنترل‌های اضافه شد. دریافت دوره 35 و دما 150 rpm منع
کریتیکی با کنترل‌های اضافه شد. دریافت دوره 35 و دما 150 rpm منع

وش: باسیلوس‌های خالص شده با روش‌های تشخیصی بوشی‌پیلی و ملکولی‌شناسی شدند.

با توجه به آن 12 سویه جداسازی شده، 8 سویه قادر به لیز تمواستی‌های غیر مفید و تولید هاله هموئیز
پروری محیط بیلی دیگر آگر بودند. سیب‌حبابی دارای فعالیت هموئیزی باید مطالعات بعدی انتخاب گردد.
کشت مصرفی 3 سویه قابل پایداری بود. کشت کسب‌های این 3 سویه نیز از نظر لیز تمواستی‌های غیر مفید
انجام شد و مقدار 38 mCN/m می‌باشد. سویه 3 سویه نسیه، کشت کسب‌های این 3 سویه نسیه، کشت

۶. نکات نهایی
نتیجه‌گیری: بررسی‌های انجام شده نشان داد که عملکرد کشت‌های کشت در تجزیه زیستی بیمارaptor از کشت
باسیلوس‌های نهایی بوده و در واقع کشت‌های کشت‌های باسیلوس‌های نهایی بوده و در واقع کشت‌های

واژه‌های کلیدی: بیوسوفکانه، کشت مصرفی، کشت‌های گربه‌ای، باسیلوس‌های، باسیلوس‌های مصرفی.
این مطالعه شامل اولین فهمه‌کارشناسی ارشد میکروبیولوژی صرب دانشکده آموزش هنری تهران شکل می‌باشد.

Email: Faridemohammadi2010@yahoo.com
در این میان برخلاف بسیاری از روشهای متداول که مشکل آنلودگی را به همراه ای دیگر تبدیل و یا آن لاینده را به استدیگ شدهفسیت زنی، با صرف كمترین هزینه، توانایی حذف دائم آنلودگی ها به تبدیل آن ها به مواد بی خطر را دارد (۱۴). به دلیل این که بیشترین قسمت نفت را هیدروکرین ها تشکیل می دهد. تجربه آن ها از لحاظ کمی مهم ترین فرآیند حفظ نفت از محیط است. لازم به ذکر است با این که ترکیبات آزوتامیک و گلی طبیعی درصد کمتری از نفت خام را تشکیل می دهد اما پایدار و سرمایه گذاری در رسیدن آن به زمان بیشتری برای تجزیه نیاز دارد (۴).

کندنه نفت خام جدا شده از مناطق آلوده به نفت نشانه دهنده زمینه مورد ارزیابی قرار دادن می باشد و شرایط بهبود رشد گیری نفت در ناحیه آنی سبب کنش سطحی و میزان کربن کل و هیدروژن موجود در نفت خام در قیل و پس از تیمار با پونری را انتزاع گیری کرده. نتایج نشان دهنده اثر تمرکب زیستی باپلیسولها بر روی هیدروکرین های نفت و توانایی آنها در استفاده از نفت به عنوان تناهی منبع کربن و انرژی می باشد (۳).

یکی از روش های پاساژی زیستی بدون صورت است که میکروگانیسم های با محیط افزوده می شوند هواپیما در کنار آنها و در مصرف می کند. در این حالت آنها و اکسید گرین آب به تبدیل در می کند، هرچند که در مقایسه زیستی ترکیبات نفتی همراه آب وی اکسید گرین مواد ویژه که طبیعی اکسیدشده و بالای حل می شود بر روی زیستی سالنیست ادرنیا به صورت مستقیم به کارگرفته می شود. روش های زیستی ضمن سازگاری با محیط زیست انتخاب همگونی نیست به هیچ روش یکی پاساژی (فیزیکی و شیمیایی) دارد.
دور 150rpm در طول 35 دقیقه سانتی گراد قرار داده شد، سپس یک لوب از باکتری را با سوزن تلفیق برداشت و روی پلیت نورترن آگار کشت خطر داده و 24 ساعت در انکباستور با دمای 30 درجه سانتی گراد نگه داشت شد. با پاساژ دادن های متعدد بر روی محيط های نورترن آگار و بلاد آگار 12 سویه خالص با بالیوسیون پاته شد. برای انجام نتیجه های مادون فرمز و گاز کروماتو گرافی -اسیکترومن، این 12 سویه بر روی محيط با 1/2 نفت کشت داده شدند و بر روی شیشه با دور 150 rpm و در مدت 125 درجه سانتی گراد گرماگذاری شدند. مواد این محيط کشت عبارتند از (39):

\[
\begin{align*}
\text{Na}_3\text{HPO}_4 & = 12 \text{ g/l}, \\
\text{K}_2\text{HPO}_4 & = 2 \text{ g/l}, \\
\text{MgSO}_4 & = 0.2 \text{ g/l}, \\
\text{NaCl} & = 0.8 \text{ g/l}, \\
\text{CaCl}_2 \cdot \text{H}_2\text{O} & = 0.1 \text{ g/l}, \\
\text{NaNO}_3 & = 2 \text{ g/l}, \\
\text{KCl} & = 0.8 \text{ g/l}, \\
\text{FeSO}_4 \cdot \text{H}_2\text{O} & = 0.02 \text{ g/l}, \\
\text{MgSO}_4 \cdot \text{H}_2\text{O} & = 0.75 \text{ g/l}.
\end{align*}
\]

7\text{H}_2\text{O} = 0.001\text{g/l}, \text{Trace element} = 2\text{ml}

Trace element: \text{ZnSO}_4, \text{H}_2\text{O}=0.75 \text{ g/l}, \\
\text{CuSO}_4 \cdot \text{H}_2\text{O} = 0.075 \text{ g/l}, \\
\text{NaMoO}_4 \cdot 2\text{H}_2\text{O} = 0.05 \text{ g/l}, \\
\text{COCl}_2 \cdot 6\text{H}_2\text{O} = 0.08 \text{ g/l}, \\
\text{H}_3\text{BO}_3 = 0.15 \text{ g/l}, \\
\text{FeCl}_3 \cdot 6\text{H}_2\text{O} = 0.08 \text{ g/l}, \\
\text{MgSO}_4 \cdot 7\text{H}_2\text{O} = 0.75\text{g/l}.

The pH should be 6.8 after sterilization.

بررسی فعالیت همولیتیک به دلیل سرعت بالا و سادگی به عنوان معیار انتخاب بالیوسیون های مولکول بهبودیسکることができ انسداد آن می‌تواند. برای انجام اینست از محیط بلاد آگار استفاده شد. تمام کشت‌های بالیوسیون که در محدوده قیل ازوله شده بودند، بر روی بلاد آگار کشت خطر داده شدند و بعد از 48-72 ساعت گرماگذاری در دمای 30 درجه سانتی گراد، نتایج بررسی شدند. از بین این تعداد سویه جداسازی شده 8 سویه قادر به لیزر نمونه‌برداری می‌شد. همچنین بررسی‌های تقابلی و احتمال جداسازی با کنترل

E.Rismani

Bacillus Licheniformis

C.Calvo

Bacillus pumilus

naphthalene

بررسی کردن(5).

تاکنون زیست سالی سازی آب‌های آلوده که جابجایی بی‌پایه و به‌جای دادن کمتر بررسی شده است. در این تحقیق، هدف بررسی زیست سالی سازی آب‌های آلوده به نفت خام با باکتری‌های جدید، در از آب‌های آلوده در پلاسیک‌ها، انتظار بهینه است.

روش‌بررسی

نوع مطالب در این تحقیق میدانی و جامعه پژوهش 4 منطقه آبی مختلف در پلاسیک‌ها نفت اصفهان بوده است، بدین صورت که آب‌های آلوده به نفت خام از مناطق مختلف -Dissolved Air- (شناور کننده‌های هوایی)

بیان - تحت شیب‌هایی که به مدت 20 دقیقه جوشانده شده بودند نمونه برداری شد. نمونه‌های جمع آوری شده در کوته‌های زمانی به آزمایشگاه منتقل و در یک ماه قرار داده شدند. سپس برای خالص سازی با پاک‌کردن ها به صورت زیبر عمل کرد. شد.

در این تحقیق باکتری از آب‌های آلوده به نفت با میکروسکوپ به شکل بالیوسیونی بی‌پایه و سپس از تیپوش و رنگ آمیزی گرم از نوع گرم منفی شناخته شد. برای تقویت و احتمال جداسازی با کنترل

ابن‌نام نمونه را به محیط

MSM

Downloaded from bjtsj.ssu.ac.ir at 8:21 IRST on Sunday January 26th 2020
پاکسازی زیستی آب‌های آب‌اندازه‌دار به نشان می‌دهد که توصیف بسیار مهم برای محیط زیست حیاتی است. می‌تواند که تغییرات محیطی و افزایش غلظت مواد شیمیایی در آب و اکوسیستم‌ها باعث افزایش میزان دچاری می‌شود. از این‌رو، باید تحقیق شود که آیا این درصد به طور کلی در اکوسیستم‌ها وجود دارد یا خیر. در این مقاله، می‌خواهیم به تحقیقاتی که در این زمینه انجام شده‌اند، نشان دهیم. تحقیقات این زمینه به‌طور کلی شامل تحقیقاتی است که در محیط‌های مختلف و با داده‌ها و مدل‌های مختلف انجام می‌شود.

Method

اماده گیری سیستم به عنوان عناصر اصلی تولید بیوسیرکاتان در نظر گرفته شد. در این مطالعه، به‌طور اولیه سیستم‌ها به‌طور یک مرحله‌ای انتخاب گردیدند. در این مطالعه، در آگار گیاهی دمکی بر روی بلوط آگار گیاهی دمکی به‌طور کمال بررسی شد.

Du Nouy Rind

(4,7,9) کاهش کشش سطحی که به روش Fast Tensiometer به‌طور اسکسپتیک به‌طور کامل فعالیت بروز می‌دهد.

References

PCR

PCR محصول در پایان می‌شود که همگونی و کلیهٔ هایی انتخاب و پس از تغییر حضور قطعه خارجی توسط این پدیده‌ها تغییر تعیین نماید. همچنین در پایان می‌شود که همگونی و کلیهٔ هایی انتخاب و پس از تغییر حضور قطعه خارجی توسط این پدیده‌ها تغییر تعیین نماید.

NCBI

از کشت باسیلوس ها به تنهايی عمل می کنند. همانطور که از
نتایج تست IR مشخص است بهترین عملکرد در تجزیه نفت
خام را در بین 3 سویه باسیلوس خالص شده باسیلوس
ولی به طور چشمگیری کنسرسیوم باسیلوس ها در تجزیه نفت
خام مسئول از کشت باسیلوس ها به تنهايی عمل می کنند.
به طوریکه کنسرسیوم باسیلوس ها در خالص شده
8350 ppm نفت از 10000 ppm را تجزیه کرده اند در م=qام
کمپلکس باسیلوس های خالص شده باعث حذف 84% نفت خام از محیط
شده اند.

<table>
<thead>
<tr>
<th>IR تست</th>
<th>نتایج تست</th>
<th>نماد</th>
<th>نسخه سانتیگراد</th>
<th>میزان کشش سطحی در دمای 25 درجه سانتی گراد</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت نفت بالایمانده نفت</td>
<td>غلظت نفت بالایمانده نفت</td>
<td>Bacillus sp₁</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>2400 ppm</td>
<td>10000 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1850 ppm</td>
<td>10000 ppm</td>
<td>Bacillus sp₂</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3950 ppm</td>
<td>10000 ppm</td>
<td>Bacillus sp₃</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>1650 ppm</td>
<td>10000 ppm</td>
<td>Consortium of Bacillus</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

روش آمادی استفاده شده در این تحقیق به صورت
b) به عمل آمده است. نمونه برداشتی از مناطق آلوده به نفت بوده
که به ازای هر نمونه 10 نمونه برداشت شد. شرح روش استفاده
در این تحقیق میدانی به ابزار مورد استفاده مشاهده بوده است.

یافته ها

میزان کشش سطحی در دمای 25 درجه سانتی گراد و نتایج
تناسب مادون قرمر در جدول 1 نشان داده شده است. نتایج نشان
دهنده آن است که کنسرسیوم باسیلوس ها در تولید
پیوسورفکانت و در نتیجه تجزیه زیستی نفت خام بسیار مؤثرت

جدول 1: میزان کشش سطحی در دمای 25 درجه سانتی گراد

<table>
<thead>
<tr>
<th>IR تست</th>
<th>نتایج تست</th>
<th>نماد</th>
<th>نسخه سانتیگراد</th>
<th>میزان کشش سطحی در دمای 25 درجه سانتی گراد</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت نفت بالایمانده نفت</td>
<td>غلظت نفت بالایمانده نفت</td>
<td>Bacillus sp₁</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>2400 ppm</td>
<td>10000 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1850 ppm</td>
<td>10000 ppm</td>
<td>Bacillus sp₂</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3950 ppm</td>
<td>10000 ppm</td>
<td>Bacillus sp₃</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>1650 ppm</td>
<td>10000 ppm</td>
<td>Consortium of Bacillus</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲: نتایج پیوسته‌ای بیوشیمیایی

<table>
<thead>
<tr>
<th>Bacillus sp₁</th>
<th>Bacillus sp₂</th>
<th>Bacillus sp₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-/+</td>
<td>+/-</td>
<td>+/+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

کاتالاز
MRVP
مازوتول
اندل
نتش لسیتاز
نتش هیدرولاز کازین
نتش آمیلاز
آراپینوز

نمودار ۲: نتایج گاز کروماتوگرافی - اسکترونتر
نتایج گاز کرومتوگرافی-اسپکترومتر در نمودار ۱ با توجه به تعداد بیشتر یک های مشاهده شده نشان می‌دهد، در بین پاسیلوس ها بهترین عملکرد در تجزیه نفت خام راکسپریوم پاسیلوس ها دارد و واقع میزان و تنوع متابولیت‌های حدوداً و راندمان کمی و کیفی طبق نتایج بدست آمده در کنسسیوم پاسیلوس ها بیشتر و بالاتر می‌باشد. عملکرد چشمگیرتر تجزیه نفت خام در کنسسیوم پاسیلوس ها، چنین بوده که در نتیجه تکثیر و کلونی‌گذاری SRNA16r در پاسیلوس ها که در شکل ۱ نشان داده شده است:

DNAsize marker-1

پاسیلوس سوئیلیس‌باکتری sp1 PCR

پاسیلوس سوئیلیس‌باکتری sp2 PCR

۱۵۰۰ bp
۱۰۰۰ bp

شکل ۱: نتایج تکثیر و کلونی‌گذاری 16SrRNA با سوئیلیس‌باکتری sp1 PCR
طرح این میکرو ارگانیسم ها از پس سیلوس ها هستند. در تحقیقات که توسط Calvo و همکاران انجام شده، عمل نموه برداری از خاک های آلووده به لجن نفی صورت گرفت و باکتری جدا شده در این تحقیق با سیلوس پویا مس رشته شد که شناسا شده رشد بسیار خوب در حضور 1 درصد نفت خام و نفتالن که از آرومینات های چند حلقه است را تحت شرایط هوازی دارد. درک اختوان و همکارانش تحقیق برای مشخص کردن بهترین باکتری تولید کننده پسرورکسانتین در میدان یک بی حکیمی در شرایط اخیسیت انجم دادند که در آن مشخصه نمودار 2: تاثیر منابع مختلف کربن روی کاهش کش سطحی

بحث و نتیجه گیری

در حالی که پیشرفت بر آن بود که میکروگانیسم ها قادر به رشد بر روی محیط های آلووده به نفت نیستند تا به تحقیقات نشان داده که میکروگانیسم های مصرف کننده نفت گسترش زیادی دارند به طوری که می‌توان آنها را از خاک‌های مزرعه جنگلی و زنبور عسل جدای نمود. هیدروکربورهای سرگی سلولاری اولیاتیک و فاقد ساختار حلقوی می‌باشند. این قابلیت هیدروکربورها معمولاً به وسیله انتقال مجدد از میکروگانیسم‌ها مورد استفاده قرار می‌گیرند. یکی از مهم
شده در آن تا ناحیه باسیلوس لیکنی فورمس به ترتیب می‌باشد(20).

پی بر تحقیقی توسط E. Rismani به این تجربه رسید که Bacillus Licheniformis

است با تولیدیوسورفکتانت نفت را تجزیه کند.

به دست کارگانیسم به نهایی قاده به تجزیه کامل

می‌گردد. تحقیق‌ها نشان داده که آب و دی اکسید کربن به عنوان

محصول نهایی نیست. از طرف نیز تجربه زیستی بهتر علاوه بر

روش‌های فوق الذکر از روش همکاری بین میکروگانیسم‌ها

نیز می‌توان بهره جاری کرد در این صورت اثر سینترپستیک

وهمکاری دوعلام تجزیه کندنه می‌تواند کارایی بهتری در

تجزیه آلاینده‌ها را باعث شود. مزیت استفاده از کنسرسیوم

باکتری‌ای:

شامل موارد زیر می‌باشد:

1- تقریباً در همه موارد استفاده از کنسرسیوم میکروگانیسم‌ها

در مقایسه با کشت نک آن ها تجربه بهتری در تجزیه زیستی

آلاینده‌ها مشاهده شده است.

2- در تجزیه استفاده از چندین عامل تجزیه کندنه و به کار

گرفتن انواع راه‌های منابعیکی شناس تجزیه‌ی کامل تر بالا

می‌رود.

3- از بین بردن موارد سرمایه تولید شده از یک سویه توسط سویه

یا سویه‌های دیگر بی‌دیده است که حذف ترکیبات سری

رآن‌دانس نجیب را بالاتر می‌برد.

4- هنگامی که تجزیه مخلوطی از موارد آلاینده مورد نظر باشد

نیز استفاده از کنسرسیوم چند میکروگانیسم مؤثر است که

می‌توان است هر یک از اعضای کنسرسیوم در تجزیه‌ی یکی

برخی از موارد آلاینده بیشترین کارایی را داشته باشد.
پاکسازی زیستی آب‌های آلوده به نفت خام توسط باسیلوس‌های جدایی‌اند هر نوع نفتی

کنسرسیوم در تولید بیومورفیکانت و در نتیجه نجیب زیستی نفت خام بسیار مؤثرتر از کشت تک میکروگانیسم ها عمل می‌کند.

طلیف سنجی مادون قرمز، روش برای شناسایی مولکولها و

پیچیدگی گروه غیر عاملی مولکولهای سر ماده‌ای، طلیف مادون

قرمز مختص به خون دارد و همانند اثر انگشت، مختص خود

مولکول می‌باشد. استحکام طیف جدیدی یک ترکیب را

حاصی می‌کند، یک استحکام طلیف سنج مادون قرمز یا به عنوان

دقتی‌تر یک استحکام‌پذیری خواندنی می‌شود(2). با استفاده از این

روش نجیب زیستی نفت توسط باسیلوس‌ها اندل می‌گیرد و

همانطور که انظارت می‌رود کنسرسیوم باسیلوس‌ها در نتیجه

زیستی عملکرد بهتری داشتند.

برای بررسی میزان نجیب نفت خام توسط کشت خالص

باسیلوس‌ها و همچنین کنسرسیوم باسیلوس‌ها از روش

گرمانوتراکی‌گزایی - طلیف سنجی چرمی استفاده شد. این

روش از دقتی‌ترین روش‌ها برای آنالیز هیدروکربن‌های

بسیار و اجزای مخلوط پیچیده را با روش گرمانوتراکی‌گزایی

توان از یکدیگر جدا کرد.

در سیاست‌های مربوط به نجیب زیستی از این روش

استفاده شده است مثلاً (نیاز JCM (Oscillatoria sp. و Cerniglia) اکسیداسیون بینفیل توسط گاز کرمالوتراکی‌گزایی استفاده کردن(11).)

امتیازات به گازی کنسرسیوم به جای کشت خالص در

زیست درمانی به طور گسترده‌ای مشخص شده است.

تشکر و قدردانی

با سیاست‌های از بالا اینگاه نفت اصفهان که در این تحقیق

حامي و پشتیبان ما بوده و در هر چه برپا شدن این تحقیق ما

را باری نمودند هم چنین حمایت مالی این تحقیق را بر عهده

دارند.
References

12. Cerniglia E, Gibso T. Metabolism of Naphthalene by the cuanobacteriam oscillation Sp. strain JCM. General Microbiology 1979; 116: 458-494
Bioremediation of water contaminated with crude oil per isolatinf Bacillus from oily pond
Mohammadi F(MS.c) * AkhavanSepahi A (Ph.D) ** Mohammadi F(Ph.D) *** Amini M (BA) ****
*corresponding Author: MSc student, Department of microbiology, Islamic Azad university north Tehran Branch
**Associate Professor of microbiology, Department of microbiology, Islamic Azad university north Tehran Branch
***PhD student, Tehran University of medical sciences, Medical Mycology, Tehran University
****B.S in animal science, Department of Agriculture, Islamic Azad university Khorasgan

Abstract

Background: Water polluted with crude oil or oil materials are one of the life environment.
Bioremediation is a simple method and economical for cleaning poluted water. The aim of this survey is to check the degradation of crude oil power with separated Bacillus from crude oil in Isfahan oil refinery.

Methods: For this purpose polluted water with crude oil is used in Isfahan oil refinery. Choosing cases were cultured in the MSM medium and 10000 ppm oil are used in this as an only carbonated bacteries sources. This cultured medium was incubated in a shaker with 150 rpm and 35°C temperature. For separating generating biosurfactant bacterias, checking hemolytic activity as the first norm of separating and isolating. For checking the strength of crude oil degradation purified three strains and this three strains consortium put IR (infrared ray) test and GC-MS (gas chromatography - spectrometry). Purified Bacillus are reganized with biochemical and molecular diagnostic methods.

Results: Among twelve strains separating, eight strains were been able to lysis sheep erythrocytes and make hemolysis halo on medium blood agar. Strains that had hemolytic activity were choosen for later studying.
Surface tension of three strains were acceptable. The consortium of this three strains was surveyed on Biosurfactant out put and purified three strains got numbers of 38, 30, 34 mN/m and consortium got 28 mN/m. When sequences above put in the BLAST program, the results showed similarity of 99.8 percent of separated bacterias with Bacillus subtilis and Bacillus cereus. Identified two Bacillus were only different in to six nucleotid.

Conclusion: The surveys showed that consortium function in the biodegradation is more effective of Bacillus culture was alone, in fact consortium worked effectively in comparison with only Bacillus in the crude oil biodegradation on the polluted waters.

Keyword: Biosurfactant, surface tension, consortium, Bacillus subtilis, Bacillus cereus