پاک‌کاری زیستی آب های آلوده به نفت خام توسط باسلوس های جدا شده از حوضچه نویسنده‌گان: فریده محمدی* عباس اخوان سپهی ** فائزه محمدی *** مصطفی امینی ****
نویسنده‌مستنی: دانشجوی کارشناسی ارشد، گروه میکروپولوژی، دانشگاه آزاد اسلامی واحد تهران شمال Email: FaridehMohammadi2010@yahoo.com
دریافت تکمیل: 1399/12/11
طوفان بهداشت

چکیده

ساسه و هدف‌آب های آلوده به نفت خام با ترکیبات تفتیکی یکی از عناصر مهم محیط زیست است. پاک‌کاری
زیستی یک روش ساده و اقتصادی برای تصهیب آب های آلوده به این اندازه هستند. هدف از این تحقیق
بررسی قدرت تجزیه نفت خام توسط باسلوس های جداسازی شده از آب های آلوده به نفت خام بالایشگاه
نفت اصفهان می‌باشد.

روش بررسی

برای این منظور از آب های آلوده به نفت خام در پالایشگاه نفت اصفهان استفاده شد. نمونه
های پرداخت شده بر روی محیطی کشت داده شد و به آن 10000 ppm MSM کشت داده شدند. سپس به آن
کربنیک بی‌کربنیک ها اضافه شدند. با استفاده از Sani-Grads گرمائ‌دگانی، برای جداسازی باکتری‌های
مولتی‌پروتئینکت، از بررسی فعالیت همولیتیک به
عناون اولیه می‌تواند جداسازی و غربالگری استفاده شد. برای بررسی قدرت تجزیه نفت خام 3 سهول
خلک شده و کنسروسیم این 3 سهول تست های IR (گاز کرومومگرافی-اسپیکرومتر) گذاشت.

شکل باسلوس های خالص شده با روش های تخصصی بیوشیمیایی و مکلولوشنی‌سازی شدند.

یافته‌ها

از سهول جداسازی شده، 8 سهول قادر به لزوم بودن ایتروسیم‌های غیره، و تولید هاله همولیز
بر روی محیط بلاد آگار بودند. سهول‌های اولیه، مجدداً تولید همنیکتیک برای مطالعات بعدی انتخاب گردیدند.

کشت سطل‌های 3 سهول قابل پایداری بوی از سهول شد. سهول ویژه‌ای از ترکیب پروتئین‌های بروز
می‌باشد. هر سهول به‌طور نرمال، 3 سهول یا 3 میلی‌گرمی، در نهایت با کاهش تعداد باکتری‌های جد
BLAST هنگامی که با روی نارتینه‌شده داده شده 598 درصد باکتری‌های جدا
با مقدار بیشتر یا بیشتر از Bacillus subtilis, Bacillus cereus, Bacillus subtilis و Bacillus cereus,
بودند. سهول، با Bacillus cereus, Bacillus subtilis
6 یک کتلول دیگر با هم تفاوت داشتند.

نتیجه‌گیری

بررسی‌های انجام شده نشان داد، عملکرد کنسروسیم تنها به زیستی بیمار مؤثر از کشت
باسلوس‌ها به تنهایی بوده، در واقع کنسروسیم باسلوس‌ها به قدری بیشتر نسبت به باسلوس‌ها به نتهای در
تجزیه‌ی زیستی نفت خام در آب های آلوده عمل کرده است.

واژه‌های کلیدی

پروتئین‌کرای، کشت سطل‌های، کنسروسیم، باسلوس بروز، باسلوس سولوئس، باسلوس سولوئس

این مقاله به‌امام خامه‌هنگام‌ارش دی، میکروپولوژی صوب دانشگاه آزاد تهران شمال می‌باشد.
پاسخ‌های زیستی آب‌های آلوده به نفت خام توسط باسیلوس‌های جدا شده از حوضچه‌های نفت

مقدمه

آلودگی محیط زیست به دلیل فعالیت‌های انسانی و صنعتی مشکلات جدی را در سراسر دنیا ایجاد کرده است. اکتشاف موتورهای سوخت داخلی و نیازگرده آن ها به نفت خام و محصولات نفتی موجب رشد قابل توجه صنعت نفت، پتروشیمی و صنایع جانبی آخر شده و باعث شده هیدروکربن‌های نفت دردیده گسترده ترین آلاینده محیط فرار گردد.

بیماری‌های اثرکردن آزمایش‌های بالینی در حیوانات ناشتا موجب تأثیرات خطرناکی که اکثریتی می‌کنند که در مقدار کمی و ناتوان‌العملی، بسیار بیماری را تولید می‌کند. نتایج این تحقیقات نشان داد که آلودگی نفت به دلیل تولید نقصه‌های داخلی لازم به ذکر است با این که تکریک آزمایش‌های و قطعی درصد کمتری از نفت خام را تشکیل می‌دهد هوای پایدار و سرمایه‌های زمانی به نظر می‌رسد که نشان می‌دهد مشکل نفت خام در این مورد از مفتاح کمی مهم ترین فراگیر خود نفت خام از محیط است.

A. Akhavansepahi و همکارانش، 15 نمونه باسیلوس از کنده نفت خام جدا شده از مناطق آلوده به نفت و شبیه به هنگام خشک کردن را مورد آزمایش قرار دادند. مسکن کشاورزی و میزان کربن کل، ترتوژن و هیدروژن موجود در نفت خام در قیل و پس از تغییر تکثیرکننده باکتری را می‌تواند استفاده از نفت به عنوان نیازهای منبع کردن. نتایج نشان دهنده اثر تخریب زیستی باسیلوس‌ها بر روی هیدروکربن‌های نفتی و توانایی آنها در استفاده از نفت به عنوان منبع کردن و انرژی می‌باشد.

F. Naimpoor و A. Partoinia

زیست سالم سازی خاک آلود به هیدروکربن‌های نرم‌نواز و ترمال هگزدان در قازان کیل و اکسپرت‌های مؤثر بر آن را بررسی کردند و نشان دادند با اکثری جدایش از نفت نوزدهان خاک آلوده به نفت توانایی کم‌گری‌دار تجزیه زیستی هگزدان کج نفت‌ها در خاک را به‌طور پیوسته است.

Downloaded from tbj.ssu.ac.ir at 12:06 IRDT on Thursday July 23rd 2020
دور 150rpm در مدت 35 درجه سانتی‌گراد قرار داده شد، سپس یک لوب از باکتری را با سوزن تلفیق برداشت و روز
پیت نوترینت آگار کشت خطی داده و 44 ساعت در انکلایتور
با 30 درجه سانتی‌گراد نگه نگه داده شد. با پاساژ دادن های
متحد بر روی میکرو های نوترینت آگار و بلاد آگار 12 سویه
خلال پاساژ برای هیچ‌کس موارد مورد
گاز کروماتوگرافی-اسیکترومتر، این 12 سویه بر روی میکرو
با 1/10 نفت کشت داده شدند و بر روی شیشه با دور
MSM و دمای 35 درجه سانتی‌گراد گرم‌گذاری شدند.
مواد این میکرو کشت عبارتند از (3):
Na₃HPO₄.12 H₂O = 2 g/l, K₂HPO₄ = 2 g/l,
MgSO₄ = 0.2 g/l, NaCl = 0.8 g/l, CaCl₂.H₂O = 0.1
g/l, NaNO₃=2g/l, KCl=0.8 g/l, FeSO₄.
7H₂O=0.001g/l, Trace element =2 ml
Trace element: ZnSO₄. H₂O=0.75 g/l,
CuSO₄.5H₂O = 0.075 g/l, NaMoO₄.2H₂O = 0.05
g/l, COCl₃.6H₂O = 0.08 g/l, H₂BO₃ = 0.15 g/l,
FeCl₃.6H₂O=0.08 g/l, MgSO₄.H₂O=0.75g/l, The
pH should be 6.8 after sterilization
بررسی فعالیت همولیتیک به دلیل سرعت بالا و سادگی به عنوان
معیار انتخاب باسیلوس‌های مولک پیوسرورفکانست استفاده شد.
برای انجام این تست از میکرو بلاد آگار استفاده شد. تمام
کشت‌های باسیلوس که در مرحله قبل از جراح شده بودند، بر روی بلاد
آگار کشت خطا داده شدند و بعد از
48-72 ساعت
گرم‌گذاری در مدت 30 درجه سانتی‌گراد، نتایج بررسی شدند.
از بین این تعداد سویه جداسازی شده 8 سویه قادر به لیز نمودن
و همکارانش طی تحقیقی قدرت تولید Bacillus Licheniformis
پیوسرورفکانست در آب های خاجی فارس در انجام تست های همولیتیک و کشش
سطحی بررسی کردند(4).
و همکارانش نیز اثر پیوسرورفکانست را بر تجزیه
جداده از سطوح نفتی Bacillus pumilus با naphthalene
بررسی کردند(5).
تاکنون زیست سالم سازی آب های آلوده که جابه‌گاه ویره و
دارند کمتر بررسی شده است. در این تحقیق، هدف بررسی
زیست سالم سازی آب آلوده به نفت خام با باکتری‌های جدا
شه از آب های آلوده در پالایشگاه نفت اصفهان است.
روش بررسی
نوع مطالعه در این تحقیق میدانی و جامعه پژوهش 4 منطقه
آبی مختلف در پالایشگاه نفت اصفهان بوده است، بدن
صورت که از آب آلوده به نفت خام از مناطق لجن فعال –
پونده – (شنوار کندنه‌ای هوایی)
توصیه شیب‌هایی که به مدت
API A/B و FloataionDaf(20 دقیقه جوشانده شده بودند. نمونه برداری شد. نمونه‌های جمع
آوری شده در کوه‌های زمان به آزمایشگاه منتقل و در یخبال
قرار داده شدند. سپس برای خالص سازی باکتری‌های به صورت
زیبر عمل کرده شد.
در این تحقیق باکتری از آب های آلوده به نفت با میکروسکوپ
به شکل باسیلوس دیده و پس از تثبیت و رنگ آمیزی گرم از نوع
گرم منفی شناخته شد. برای تقویت و احتمال جداسازی باکتری
این نمونه را به میکرو
Downloaded from tbj.ssu.ac.ir at 12:06 IRDT on Thursday July 23rd 2020
نتیجه نشان می‌دهد که تکراری‌های مولزی در روی‌های مایع بیش‌تر می‌باشند.

یک جفت از این روش‌ها، با استفاده از دستگاه Tensiometer (Tensiometer)، در جدول زیر ذکر شده است. توالی پراپارای های فوق به شرح زیر است:

\[
\begin{align*}
\text{rD1} & : 5'\ cccagatctgcaacacagttgatcctggctcag \ 3' \\
\text{rD2} & : 5'\ cccgggatccaagcttaaggaggtgatccagcc \ 3'
\end{align*}
\]

این روش برای تکثیر زن PCR با چک کردن دنباله‌های های مورد نظر استفاده می‌شود. جاکلر آب مفرغ دار ترکیب استرلی اسپیناسیون به مدت 10 دقیقه در آپ جوش قرار داده شد. 5 جاکلر آب سپس‌پوینش فوق به عنوان DNA از پراپارای های PCR استفاده شد.

\[
\begin{align*}
\text{PCR} & : \text{NCBI} \\
\text{DNA} & : \text{pBluescript SK +/-}
\end{align*}
\]

در حال حاضر، از سومه‌های مایع و سپس ذخیره حضور قطعه خارجی توسط تکثیری با استفاده از پراپارای های PCR NCBI می‌باشند. توالی PCR حاصل با توالی های موجود در بانک اطلاعات ZIWIY مقایسه شد.

\[
\begin{align*}
\text{PCR} & : \text{NCBI} \\
\text{DNA} & : \text{pBluescript SK +/-}
\end{align*}
\]

در بررسی‌های گرفته‌نواز و تولید هاله هم‌پلزی بر روی محیط بار آگر بودن. کنسروسیم این 8 سومه نیز از نظر تولید بی‌پروفسورفاکتنت بررسی شد. سومه‌های دارای فعالیت هم‌پلزیک برای مطالعات برخوردار گردیدند. کشش محیط سویه هایی که توانایی هم‌پلزی بر روی باد آگر را داشتند بررسی شد.

Du Nouy Rind

(6.7) کاهش کشش محیطی که به روی

( Tensiometer

و با استفاده از دستگاه Tensiometer (Tensiometer)

اندازه گیری شده به عنوان عبارت اصلی تولید بی‌پروفسورفاکتنت در

نظر گرفته شد. بدنی منتور هر یک از سومه‌ها به ارتفاع 250 میلی لتری تولید 50 میلی لتر محیط پای منکی به همراه 1

Yeast Extract 1gr/lit +

گرم در لیتر عصاره مخم ( )

و 1 درصد نفت خام به عنوان منبع کربن و ارزی

اضافه شد و به مدت 72 ساعت در دمای 30 درجه سانتی

گراد بر روی شیکر با دور 150 rpm قرار داده شد. مقدار

میلی لتر از کشت 48 ساعت نه یک از نمونه‌ها را در ظرف

نمونه دستگاه ریخته شد. همگی نمونه قبل از اندازه‌گیری کشش

سطحی به 15 درجه سانتی‌گراد رسیدند و آزمایش‌برای هر

نمونه می‌تواند تکرار شد. برای هر بار اندازه‌گیری به همراه

نمونه‌ها کشش سطحی آب مفرغ و محیط کشش فاقد باکتری به

عنوان شاهد در نظر گرفته شد. اندامه‌گیری کشش سطحی نشان

داد که 3 سومه از سومه‌های دارای فعالیت هم‌پلزیک، در حد

قابل قبولی بین‌پروفسورفاکتنت تولید می‌کنند. (28). برای تشخیص

اولیه با پروفسورفاکتنت که در حد قابل قبولی بین‌پروفسورفاکتنت تولید

کردن تنها یوتیویشیم‌ای انجام شدو برای بررسی قدرت

تجزیه نفت در بین 3 سومه با پروفسورفاکتنت خالص شده و کسپریموم

ابن 3 سومه نت مادون قمر ( ) انجام شد. برای انجام این
از کشت باسیلوس ها به تنهایی عمل می کنند. همانطور که از
نتایج تست IR مشخص است بهترین عملکرد در تجزیه نفت
خام را در بین 3 سویه باسیلوس خالص شده باسیلوس سپارد
ولی به طور جشن‌گیری کنسسروپم باسیلوس ها در تجزیه نفت
خام سپارنده از کشت باسیلوس ها به تنهایی عمل می کند
8350ppm نفت از 10000 ppm را تجزیه کرده اند در واقع کمپلکس
باسیلوس های خالص شده باعث حذف 84% نفت خام از محیط
شده اند.

نتایج بهبود می‌یابد که در جدول ٢ نتایج داده شده است
برای شناسایی باسیلوس استفاده شده و هر یک ۳ بار تکرار
گردیده است.

<table>
<thead>
<tr>
<th>جدول ۱: میزان کشش سطحی در دماه ۲۵ درجه سانتی گراد</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>میزان کشش سطحی در دماه ۲۵ درجه سانتی گراد</strong></td>
</tr>
<tr>
<td><strong>نتایج تست IR</strong></td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>کشت باسیلوس ها</td>
</tr>
</tbody>
</table>
جدول ۲: نتایج تست‌های بیوشیمیایی

<table>
<thead>
<tr>
<th>Bacillus sp۱</th>
<th>Bacillus sp۲</th>
<th>Bacillus sp۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-/+</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

کاتالاز
MRVP
مانیون
اندلا
نتست دیسیناز
نتست هیدرولیز کارتیین
نتست آمیلаз
آراپینوز

نمودار ۱: نتیجه گاز کروماتوگرافی - اسپکترومتر
نتایج گزارش کروموموگرافی-اسپیکرومتر در نمودار ۱ با توجه به تعداد بیشتر پیک های مشاهده شده نشان می‌دهد، در بین باسیلوس ها بهترین عملکرد در تجزیه نفت خام راکتسرسیوم باسیلوس ها دارد. در واقع میزان و تنوع متابولیت‌های حدود و راندمان کمی و کیفی طبق نتایج بدست آمده در کنسنسرسیوم باسیلوس ها بیشتر بالاتر می‌باشد. عملکرد چشمگیر تجزیه نفت خام در کنسنسرسیوم باسیلوس ها، کاملاً بارز می‌باشد. در نتیجه تکثیر و کلونی‌گذاری 16SrRNA در نمودار باسیلوس ها که در شکل ۱ نشان داده شده است:

DNAsize marker-1

۲- محصول باکتریی PCR باسیلوس سروتیلیس

۳- محصول باکتریی PCR باسیلوس سروتیلیس

۴- محصول باکتریی PCR باسیلوس سروتیلیس

نمایش نواحی مشخص شده با نشان داده شده در نمودار ۱ نشان می‌دهد که با توجه به تعداد بیشتر پیک های مشاهده شده نشان می‌دهد، در بین باسیلوس ها بهترین عملکرد در تجزیه نفت خام راکتسرسیوم باسیلوس ها دارد. در واقع میزان و تنوع متابولیت‌های حدود و راندمان کمی و کیفی طبق نتایج بدست آمده در کنسنسرسیوم باسیلوس ها بیشتر بالاتر می‌باشد. عملکرد چشمگیر تجزیه نفت خام در کنسنسرسیوم باسیلوس ها، کاملاً بارز می‌باشد. در نتیجه تکثیر و کلونی‌گذاری 16SrRNA در نمودار باسیلوس ها که در شکل ۱ نشان داده شده است:

DNAsize marker-1

۲- محصول باکتریی PCR باسیلوس سروتیلیس

۳- محصول باکتریی PCR باسیلوس سروتیلیس

۴- محصول باکتریی PCR باسیلوس سروتیلیس

نتایج گزارش کروموموگرافی-اسپیکرومتر در نمودار ۱ با توجه به تعداد بیشتر پیک های مشاهده شده نشان می‌دهد، در بین باسیلوس ها بهترین عملکرد در تجزیه نفت خام راکتسرسیوم باسیلوس ها دارد. در واقع میزان و تنوع متابولیت‌های حدود و راندمان کمی و کیفی طبق نتایج بدست آمده در کنسنسرسیوم باسیلوس ها بیشتر بالاتر می‌باشد. عملکرد چشمگیر تجزیه نفت خام در کنسنسرسیوم باسیلوس ها، کاملاً بارز می‌باشد. در نتیجه تکثیر و کلونی‌گذاری 16SrRNA در نمودار باسیلوس ها که در شکل ۱ نشان داده شده است:

DNAsize marker-1

۲- محصول باکتریی PCR باسیلوس سروتیلیس

۳- محصول باکتریی PCR باسیلوس سروتیلیس

۴- محصول باکتریی PCR باسیلوس سروتیلیس

نتایج گزارش کروموموگرافی-اسپیکرومتر در نمودار ۱ با توجه به تعداد بیشتر پیک های مشاهده شده نشان می‌دهد، در بین باسیلوس ها بهترین عملکرد در تجزیه نفت خام راکتسرسیوم باسیلوس ها دارد. در واقع میزان و تنوع متابولیت‌های حدود و راندمان کمی و کیفی طبق نتایج بدست آمده در کنسنسرسیوم باسیلوس ها بیشتر بالاتر می‌باشد. عملکرد چشمگیر تجزیه نفت خام در کنسنسرسیوم باسیلوس ها، کاملاً بارز می‌باشد. در نتیجه تکثیر و کلونی‌گذاری 16SrRNA در نمودار باسیلوس ها که در شکل ۱ نشان داده شده است:

DNAsize marker-1

۲- محصول باکتریی PCR باسیلوس سروتیلیس

۳- محصول باکتریی PCR باسیلوس سروتیلیس

۴- محصول باکتریی PCR باسیلوس سروتیلیس

نتایج گزارش کروموموگرافی-اسپیکرومتر در نمودار ۱ با توجه به تعداد بیشتر پیک های مشاهده شده Nشان می‌دهد، در بین باسیلوس ها بهترین عملکرد در Tتجزیه Nفت خام Rاکتسرسیوم باسیلوس ها دارد. در واقع Mیزان و تنوع Mمتابولیت های حدود و Rاندمان Kمی و کیفی طبق نتایج بدست آمده در کنسنسرسیوم باسیلوس ها بیشتر بالاتر Mی باشد. عملکرد چشمگیر Tتجزیه Nفت خام در کنسنسرسیوم باسیلوس ها، Kاملاً Bارز Mی باشد. در Nنتیجه Tکثیر و Kکلونی‌گذاری 16SrRNA در نمودار باسیلوس ها که در شکل ۱ نشان داده شده است: DNA...
بحث و نتیجه گیری

در سال‌های پیش تصور برآن بود که میکروب‌گانیسم‌ها قادر به رشد بر روی محیط‌های آلوده به نفت نیستند ولی تحقیقات نشان داده که میکروب‌گانیسم‌های مضر کننده نفت گسترش زیادی دارند به طوری که می‌توان آن‌ها را از خاک‌های مزارع جنگلی یا چمن زار جذا نمود (9). هیدروکربورهای سه‌گی نو اثرات آلفاکینک و فاقد ساختمان حلقوی می‌باشند. این قابل هیدروکربورها معمولاً به وسیله انواع متعددی از میکروب‌گانیسم‌ها مورد استفاده قرار می‌شوند. یکی از مهم‌ترین میکروب‌گانیسم‌ها با سیلوس‌های بالسوسیوس ها هستند (9). در تحقیقی که توسط و همکاران انجام شده، عمل نمونه برداری از خاک‌های آلوده به لجن نفتی صورت گرفت و باکتری جدایی شده در این تحقیق با سیلوس پوی‌سوزی شناخته شد که توانایی رشد بسیار خوب در حضور ۱ درصد نفت خام و نفتکانه‌ها از آروماتیک‌ها چند هفته است را تحت شرایط هوازی دارد (6). دکتر اخوان و همکارانش تحقیقی برای مشخص کردن بهترین باکتری تولید کننده بیوسورفکانت در میدان کی به حکیمی در شرایط Exsitu انجام دادند که در آن مشخص
شکل در آن ناحیه با پس‌لیس لیکنی فودومس به‌ترين مي‌باشد (10).

علي تحقيقات توسط E.Rismani به این نتيع رسيد كه Bacillus Licheniformis
 جدا شده از خليج فارس قادر است با توليد پروتئنجينه روست را نتجه‌زد.

ميجي ميكوريلانيم بر نتيع قادر به تجريه کامل

بهصورت يك نتيع به آپ و دي اکسي گري به عنوان

محصول نهدي نيست. از طرفي برای تجريه زيستي بهتر علاوه بر

روش يك فوق الذكر از روش همکارى بين ميكوريلانيم ها

نتيع مي توان بهره گرفت چرا كه در اين صورت اثر سينتيرستيک

وهمکارى دو عامل تجريه كننده مي تواند كارايي بيهري در

تجريه آلانئده را باعث شود. مزيت استفاده از كنسرسوم

باکريايى:

شامل موارد زير مي باشد (2):

- تقريباً در همه موارد استفاده از كنسرسوم ميكوريلانيم ها

در مقايسه با كشت نتيع هاي طبقي در تجريه زيستي

آلانئده ها مشاهده شده است.

- در نتيع استفاده از جندين عامل تجريه كننده و به كار

گرفتن انواع فودومس ميكروبيدي تشخيص تجريه ي کامل تر بالا

مي رود.

- از بين بردن موارد سمي توليد شده از يك اينه سويه توسط سويه

يابديگر بهديهي است كه حذف تركيات مي

راهنمای تجريه را بالاحمر مي برد.

- هيج تجريه محکومیت از موارد آلانئده مورد نظر باشد

نتيع استفاده از كنسرسوم جندي ميكوريلانيم مؤثر است چرا كه

ممكن است هر یک از اعضاي كنسرسوم در تجريه يکي يا

برخى از موارد آلانئده بيشترین كارايى را داشته باشد.

از آن جا که کاشت کشش سطحی محیطرش می‌تواند و

اصل ترين معایر برای اثبت تولید بیوسورتیک محسوب

می شود لذا این تحقیق پس از روش‌گرگ آویز بیا بررسی

فعالت همولیتیک و کاشت تعداد باسیلوس های انتخاب شده، از

آزمایش کشش سطحی برای بررسی و تاپید توان این سویه

در تولید بیوسورتیک استفاده شد. بیوسورتیک های زیادی

شناخته شده اند که از میان آن ها سویه کتین قوي ترین

بیوسورتیک است که تا حال گزارش شده است. سویه کتین

پی دوپلیپین با فعالیت سطحی قابل توجه است که به وسیله

باسیلوس سولیپس و در حضور سیلیک اتربی مخلوط در آب

تولید می شود. بیوسورتیک قرار است کشش سطحی

محیط رشد را از 70mN/m تا مقادیر 20mN/m کاهش دهد.

در طی تحقیقی در سال 1985 برای جداسازی یک سایر

های محل بیوسورتیک است فعالیت همولیتیک استفاده کرده (9).

در مطالعاتی که توسط Bernheimer و Avigad

1970 در مطالعاتی که توسط Bernheimer و Avigad

صورت گرفت از همولیتیک بتر در محیط بلاد آگار به عنوان

معایر تولید بیوسورتیک استفاده شد (11). طی تحقیقات خانم

فرنان افشار امراى در ارتباط با بررسی اثر کنسرسوم باسیلوس

ها در تجريه تولون خاك هاي آدامه مجمع پتروشيمي اصفهان

هر سه باسیلوس B3,B6,B12 کاشد به نتيعی و به صورت

کشت خالص، کشش سطحی محیط کشت یا به ترتیب تا 25

و 37 3971 و در حالات سرسری نیز تا مقادیر

29mN/m 37 و 3971 کاشش

داده (2). در این تحقیق سه نمونه کششی

به نتيعی و به صورت کشت خالص، کشش سطحی محیط

کشت را به ترتیب تا 37 3971 و 28mN/m

یابندام تجريه را بالاحمر مي برد.
پاکسازی زیستی آب‌های آلوده به نفت خام توسط بسیاری قسمت‌های جدا شده از حوضچه‌های نفت

کنسرسیوم در تولید بیومورفیکات و در نتیجه تجزیه زیستی نفت خام بسیار مؤثرتر از کشت تک میکروگانیزم‌ها عمل می‌کند.

طلب سنگی مادون قرمز، روش برای شناسایی مولکولها و
بخش‌های جزئی جدول مولکول‌ها. هر ماده‌ای، طیف مادون
فرم‌های مختلف به خود دارد و همانند اثر اینگونه مختصات خود
مولکول‌ها بیشتر. مست قسمتی که طیف جدیدی یک ترکیب را
حالمی کنید، یک دستگاه طیف سنگی مادون قرمز یا به عبارت
دیگر یک اسکیترون‌متر خواده می‌شود. ۲/ با استفاده از این
روش تجزیه زیستی نفت خام توسط بسیاری به سادگی گیری شد و
همانطور که انتظار می‌رفت میکروگانیزم‌ها در تجزیه
زیستی عملکرد بهتری داشتند.

برای بررسی منابعی نفت خام توسط کشت خاص
پاسیوس‌ها و هم‌چنین کنسرسیوم بسیاری‌ها از روش
کرومومگرافی‌گازی – طیف سنگی جرمی استفاده شد. این
روش یکی از دقیق ترین روش‌هایی برای آنالیز هیدروکربن‌های
پاکر و استخراج مخلوط پیچیده‌ها را به روش کرومومگرافی‌های
توان از یکدیگر جدا کرد.

در بسیاری از مطالعات مربوط به تجزیه زیستی از این روش
استفاده شده است مثالاً Cerniglia(2) اکسیداسیون بینیلی نیز توسط
اکسیداسیون بینیلی نیز توسط (نژاد JCM Oscillatoria sp.)
کرومومگرافی‌گازی استفاده کردن(11). امکانات به کار گیری کنسرسیوم به چگونه کشت خاص در
زیست درمانی به طور گسترده‌ای مشخص شده است.

تشکر و قدردانی

با سپاس فراوان از بالی‌پسران نفت اصفهان که در این تحقیق
حمایت و تشویقی‌ها بودند و ان در هر چه بیارتر شدند این تحقیق ما
را باره‌بزنده‌ها هم چنین حمایت مالی این تحقیق را بپر عهده
دارست.
References
1- Partoinia A, Naimpoor F. Biromidation of contaminated soil with oily normal- hexadacan to Fazdoghabi and scrutiny sensational parameter. Scientific journal of oil 2008; 58 (18):3-10 [Persian]
2- Afshar Ebrahimi F. Scrunity effect consortium of Bacillus in degradation on Toloen contaminated soil in Esfahan Petrochemical [MSc thesis]. North Tehran University. 2010. [Persian]
4- Rismani E, Fooladi J, Ebrahimipor GH. Biosurfactant production in Batch culture by a Bacillus licheniformis isolated from the Persian Gulf. Biological Science 2006; 9: 2498-2502
8- Cooper, Goldenberg BG. Surface-active agents from two Bacillus species. Applied Environmental Microbiology 1987; 53: 224-229
9- Banat IM. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation. Bioresource Technology 1995; 51(1): 1-12
12- Cerniglia E, Gibso T. Metabolism of Naphthalene by the cyanobacteriam oscillation Sp. strain JCM. General Microbiology 1979; 116: 458-494
Bioremediation of water contaminated with crude oil per isolatn Bacillus from oily pound
Mohammadi F(MS.c) * AkhavanSepahi A (Ph.D) ** Mohammadi F(Ph.D) *** Amini M (BA) ****
*corresponding Author: MSc student , Department of microbiology, Islamic Azad university north Tehran Branch
**Associate Professor of microbiology, Department of microbiology, Islamic Azad university north Tehran Branch
***PhD student, Tehran University of medical sciences, Medical Mycology, Tehran University
****B.S in animal science,Department of Agriculture , Islamic Azad university Khorasgan

Abstract

Background: Water polluted with crude oil or oil materials are one of the life environment. Bioremediation is a simple method and economical for cleaning poluted water. the aim of this survey is to check the degradation of crude oil power with separated Bacillus from crude oil in Isfahan oil refinery.

Methods: For this purpose polluted water with crude oil is used in Isfahan oil refinery. choosing cases were cultured in the MSM medium and 10000 ppm oil are used in this as an only carbonated bacteries sources. this cultured medium was incubated in a shaker with 150 rpm and 35° tempreture. For separating generating biosurfactant bacterias, checking hemolytic activity as the first norm of separating and isolating. for checking the strength of crude oil degradation purified three strains and this three strains consortium put IR (infrared rey) test and GC-MS (gas chromatography - spectrometry). Purified Bacillus are reganized with biochemical and molecular diagnostic methods.

Results: Among twelve strains separating, eight strains were been able to lysis sheep erythrocytes and make hemolysis halo on medium blood agar. strains that had hemolytic activity were choosen for later studying. Surface tension of three strains were acceptable. the consortium of this three strains was surveyed on Biosurfactant out put and purified three strains got numbers of 38, 30, 34 mN/m and consortium got 28 mN/m. when sequences above put in the BLAST program, the results showed similarity of 99.8 percent of separated bacterias with Bacillus subtilis and Bacillus cereus. Identified two Bacillus were only deferent in to six nucleotid.

Conclusion: The surveys showed that consortium function in the biodegradation is more effective of Bacillus culture was alone, in fact consortium worked effectively in comparison with only Bacillus in the crude oil biodegradation on the polluted waters.

Keyword: Biosurfactant, surface tension, consortium, Bacillus subtilis, Bacillus cereus