پاک‌کاری زیستی آپ های آلوده به نفت خام توسط باسیلوس های جدا شده از حوضچه

نویسنده‌گان: فریده محمودی عباس اخوان سپهی تفتی محمدی مصطفی امینی

طلوع بهداشت

چکیده
ساخته و هدف‌های آپ های آلوده به نفت خام یکی از مناطق محیط زیست اند. پاک‌کاری
یکپارچه روش ساده و اقتصادی برای نظیه آپ های آلوده به این اندام هاست. هدف از این
تحقیق بررسی قدرت تجزیه نفت خام توسط باسیلوس های جداسازی شده از آپ های آلوده به نفت خارج
انجام شده است.

روش بررسی برای این منظور از آپ های آلوده به نفت خام در پالایشگاه نفت خوزستان استفاده شد. نمونه
های برداشت شده بر روی محیط مشاهده شدند. نفت به عنوان نهایی کرپی کننده یکی از مناطق محیطی
کشت داده شد. به آن 10000 ppm نفت به علت نزدیکی نیاز داشت. درجه 150 rpm
سانتی‌گرم‌گذاری شد. برای جداسازی باکتری‌های مولد بیومورف‌کننده از بررسی مولتی‌فیلی
عنوان اولیه میزان حجمی و مولتی‌فیلی استفاده شد. برای بررسی قدرت تجزیه نفت خام
شده و کنسروسیوم این سویه نست های IR (گاز کرومو‌ماتوگرافی-اسکیمتر/گذاشتی)
و (گاز کرومو‌ماتوگرافی-اسکیمتر/گذاشتی)
ژن‌ها و کنسروسیوم این سویه نست های IR (گاز کرومو‌ماتوگرافی-اسکیمتر/گذاشتی)

رش باسیلوس های خاص شده با روش های تنش‌سنجی بیوشیمی و ملکول‌شناسی شدند.

یافته‌ها: هزاران 12 سویه جداسازی شده، 8 سویه قادر به لیت تولید نیستند، و تولید هاله هم‌پز
برروی محیط بیشتر آگ آگ بودند. سیاه‌های دارای فعالیت هم‌پز بودند. برای مطالعات بعدی انتخاب گردید.

کشت سطحی 3 سویه قابل پایین‌تر بود. کنسروسیوم این سویه نیز از نظر تولید بیومورف‌کننده بررسی شد
و نتایج 3 سرعت خاص و 3 سویه نست های IR (گاز کرومو‌ماتوگرافی-اسکیمتر/گذاشتی)
برای 3 سویه خاص شده و 3 سویه نست های IR (گاز کرومو‌ماتوگرافی-اسکیمتر/گذاشتی)
نگاره‌های که توان در در برنامه شناسی مشاهده شده، با کمک حاصله در Bacillus subtilis و با-ست
بودند. روش سوپری Bacillus subtilis و Bacillus subtilis

6 نوکلئوتید با هم تفاوت داشتند.

نتیجه‌گیری: بررسی های انجام شده نشان داد، عملکرد کنسروسیوم در تجزیه زیستی بیماری از کشت
باسیلوس ها به نهایت بوده، در واقع کنسروسیوم باسیلوس ها به قدرت نهایی نسبت به باسیلوس ها به نهایی در
تجزیه زیستی نفت خام در آپ های آلوده عمل کرده است.

واژه‌های کلیدی: بیومورف‌کننده، کشت سطحی، کنسروسیوم، باسیلوس سرطان، باسیلوس سوپری

این مطالعه حاصل پان‌نامه کارشناسی ارشد میکروبیولوژی صوب دانشگاه آزاد هرمزگان شمار می‌باشد.
دراین میان برخلاف بسیاری از روش‌های متداول که مشکل آلوگربی را به گونه‌ای دیگر مبنای بر یا ابزارهای به بستر دیگری مشترکی در اینجا، پالایش زیستی با صرف کمترین هرنه، قطعاتی حذف دائم آلاوگربی ها تبدیل آنها به مواد بي خطر را دارد (2).

به دلیل اینکه بیشترین قسمت نفت را هیدروکرین‌ها تشکیل می‌دهند، تجزیه آنها هزاران کمی مهم ترین فرآیند حفظ نفت از محیط است.

لازم به ذکر است با اینکه ترکیبات آروماتیکی فقطی درصد کمتری از نفت خام را تشکیل می‌دهند اما پایدارند و سپس تر بوده و به زمان بیشتری برای تحمل زیر نیاز دارند (2).

A. Akhavansepahی گونه با پیشنهادات تجزیه نفت نفت کننده نفت جدی جدا شده و جزء اتنول‌های سطحی و شرایط بهینه رشد مشترک را مورد ارزیابی قرار داده است. سپس کشش سطحی و میزان کربن کل نیتروژن و هیدروژن موجود در نفت خام در قبل و پس از تمرکز با کمکی از اندازه‌گیری کردن، نتایج نشان دهنده اثر ترخیص زیستی با بهینه‌سازی های نفت و توانایی آنها در استفاده از نفت به عنوان نیروی کربن و انرژی به باشد (3).

F. Naimpoor و A. Partoinia، از ادعاگوش علم و صنعت نیز زیست سالم سازی خاک آلوده به هیدروکرین نتیجه نرمال هگزدانک در فاز اولیه ویاکاریماتی رئولر بر روی روابط کردن و نشان دادند. باکتری جداسازی از اکسیداسیون آلوده به نفت توانایی چندگانه در تجزیه زیستی هگزدانک جذب شده درخواست مورد نظر داشته است (1).

مقدمه

آلودگی محیط زیست به دلیل فعالیت‌های انسانی و صنعتی مشکلات گردیده را در در سراسر دنیا ایجاد کرده است. اختراع موثرهای سوخت‌دمنش و نیازگرتهای آنها به نفت خام و محصولات نفتی موجب رشد قابل توجه صنعت نفت، پتروشیمی و صنایع جانبی آن شده و باعث شده هیدروکرین‌های نفتی دردسری‌تر گسترش ترین آلودگی‌های محیطی قرار گرفته (1).

پس از ازکارگیری آروماتیک‌بندی شده، سیستم هرمون‌های تأثیرات خطرناکی که ورود را اعمال می‌کنند، در مقدار کم‌تر از رنگ‌های تولید می‌شود. همین‌طور می‌توانند تولید دقیق اثرات سرطان‌زا را دارند. با توجه به نتایج حاصله‌های بی‌پایانی اثرات میکروorganisms های بالغ وونه وی درک درب‌اندازه‌های مهمی به جا می‌گذارد (2).

یکی از روش‌های پاکسازی زیستی بدین صورت است که میکروorganisms حاوی محیط اوزونی می‌شونده کننده نفت خام را به عنوان نیروی انرژی و چری مصرف به کننده زیستی و چری به کننده ترین حالت آبیاری دیگر اقدام کردن و آب تبدیل می‌کند، هرج و مرج‌کاری تخصصی ترکیبات نفتی همراه آب و دیگر اکسیداسیون مواد‌گریز که اغلب اکسیدشده وقابل حل، نیز به دست می‌آید. پاکسازی زیستی سال‌های دردنا به صورت میدانی به کارگرفته می‌شود. روش‌های زیستی ضمن سازگاری با محیط زیست، انرژی‌های نیز برتری محصولی نسبت به دیگر روش‌های پاکسازی (فیزیکی و شیمیایی) دارد.
E. Rismani

Bacillus Licheniformis

150rpm

Dissolved Air Daf

API A/B

Floataion Daf

Dissolved Air

Downloaded from tbj.ssu.ac.ir at 0:14 IRDT on Thursday April 9th 2020
نست، سویه‌های باسیلوس در محیط با 1% نفت خام کشت داده شدند و برای مشخص نمودن بهبود عمکر در تجزیه نفت خام از این گاز کروماتوگرافی-اسکترومتر (MS) استفاده شد. برای انجم این نست، سویه‌های باسیلوس در محیط با 1% نفت خام کشت داده شدند. در نهایت DNA پاتریک‌ها جدا شده و خالص شده به روش FAST استخراج گردید.

Method

Du Nouy Rind (7.6) کاهش سطحی که به روش Tensiometer (استخراج از دستگاه تنش‌نمر) اندوزه گیری شد به عنوان معاصر اصلی تولید بیوسورفکانت در نظر گرفته شد. بدن منظور هر یک از سویه‌ها به اندازه‌ای تخمینی 250 میلی لیتر خواهد 50 میلی لیتر محیط پایه نمکی به همراه 1 گرم در میلی لیتر عصاره مخمر (Yeast Extract 1g/l) + و 1 درصد نفت خام به عنوان منبع کریزن و انرژی اضافی شد و به مدت 72 ساعت در دمای 30 درجه سانتی گراد بر روی شیکر با دور 150 rpm مقدار 25 میلی لیتر از کشت 28 ساعت هر یک از نمونه‌ها را در ظرف نمونه دستگاه ریخته شد. دمای نمونه قبل از اندوزه گیری کشش سطحی به 25 درجه سانتی گراد رسانده شد آزمایش پاره هر نمونه سه روز نگه داشت شد. برای هر اندوزه گیری بیمار به همراه نمونه‌ها کشت سطحی آب منطق و محیط کشت فاقر باکتری به عنوان شاهد در نظر گرفته شد. اندوزه گیری کشش سطحی نشان داد که 3 سویه از سویه‌های دارای فعالیت هم‌لیتوکسیک، در حد قابل قبول بیوسورفکانت تولید می‌کنند (28). برای تخصص اولیه باسیلوس‌هایی که در حد قابل قبول بیوسورفکانت تولید کردن نسمت های بیوشیمیایی انجم شد، برای بررسی قدرت تجزیه نفت در این سویه‌ها باسیلوس خالص شده و کسرسانی این سویه‌ها نت‌باندان فرم گردید (انجم شد). برای انجام این
PCR buffer = 1X, MgCl$_2$ = 1.5mM, DNTPs = 2mM,
fD_1 = 10 µM, rD_1 = 10 µM, DNA = 3 µM, TaqDNA Polymerase = 1U

Map

Table 1: Results of Bacillus sp detection in 25 different samples

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Concentration (ppm)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus sp$_1$</td>
<td>2400 ppm</td>
<td>34</td>
</tr>
<tr>
<td>Bacillus sp$_2$</td>
<td>1850 ppm</td>
<td>30</td>
</tr>
<tr>
<td>Bacillus sp$_3$</td>
<td>3950 ppm</td>
<td>38</td>
</tr>
<tr>
<td>Consortium of Bacillus</td>
<td>1650 ppm</td>
<td>28</td>
</tr>
</tbody>
</table>
جدول 2: نتایج تست‌های بیوشیمیایی

<table>
<thead>
<tr>
<th>Bacillus sp₁</th>
<th>Bacillus sp₂</th>
<th>Bacillus sp₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-/+</td>
<td>+/-</td>
<td>+/+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

کاتالاز
MRVP
ماجول
اندل
 تست لسبیتاز
 تست هیدروژن کارتین
 تست آمیلاز
 آرابتوز

نمودار 1: نتیجه گاز کروماتوگرافی - اسکترومتر
نتایج گزارش کروماتوگرافی-آسیکترونیک در نمونه 1 با توجه به تعداد بیشتر پیک های مشاهده شده نشان می‌دهد، در بین باسیلوس‌ها بهترین عملکرد در تجزیه نفت خام راکسروسوم باسیلوس‌ها دارد و واقع میزان و تنوع متاولیت‌های حذف‌پذیر و راندمان کمی که کنترل طبق نتایج بدست آمده در کرسرسوم باسیلوس‌ها بیشتر و بالاتر می‌باشد. عملکردهای تجزیه نفت خام در کرسرسوم باسیلوس‌ها کاملاً بهتر می‌باشد.

در نتیجه تکثیر و کلونی‌گذاری 16S RNA باسیلوس‌ها که در شکل 1 نشان داده شده است:

DNA size marker-1

2- محصول PCR باکتری 1 باسیلوس سوئیتیلیس

3- محصول PCR باکتری 2 باسیلوس سوئیتیلیس

ج�‌دادن نمونه‌های سبک 1 و 2 باسیلوس سوئیتیلیس:

شکل 1: نتایج تکثیر و کلونی‌گذاری باسیلوس‌ها
نمودار 2: تأثیر منابع مختلف کربن روی کاهش کش سطحی

بحث و نتیجه‌گیری

در سال‌های پیش تصویب بر آن بود که میکروگانیسم‌ها قادر به رشد بر روی محیط‌های آلوده به نفت نیستند و تحصیلات نشان داده که میکروگانیسم‌های مصرف کننده نفت گسترش زیبایی دارند. بدین معنی که می‌توان آن‌ها را از خاک‌های زراعی مزارع جنگلی و جنگل زار جدا نمود. هیدروکربورهای سنگین دارای ترکیبات آلیفاتیک و فاقد ساختار حلقوی می‌باشند. این قابلیت هیدروکربورها معمولاً به سبب افزایش تعداد از میکروگانیسم‌ها مورد استفاده قرار می‌گیرند. بنابراین، یکی از مهم

ترین این میکروارگانیسم‌ها باسیلوس‌ها هستند. در تحقیقات که توسط Calvo و همکاران انجام شد، عمل نمونه برداری از شاخه‌های آلوده به لجن نفتی صورت گرفت و باکتری‌های شده در این تحقیق باسیلوس‌های شناخته شد که توانایی رشد بهتر خوب در حضور 1 درصد نفت خام و نفتالن که از آروماتیک‌های چند حلقه است را تحت شرایط هوازی دارد. یک دکتر اخوان و همکارانش تحقیقی برای مشخص کردن بهترین باکتری تولید کننده به‌صورت‌کاتالاز در میدان بی‌حکمیه در شرایط Exsitu انجام دادند. که در آن مشخص
Bacillus Licheniformis

E.Rismani

AB3B6B12

20mN/m

70mN/m

30mN/m

Bernheimer and Avigad

J@N*!
N*H)I
Icd&

28mN/m
Cerniglia et al.

Oscillatoria sp (ICM 901) Oscillatoria sp.var. Carneigii

Downloaded from tbj.ssu.ac.ir at 0:14 IRDT on Thursday April 9th 2020
References

12. Cerniglia E, Gibso T. Metabolism of Naphthalene by the cyanobacterium oscillation Sp. strain JCM. General Microbiology 1979; 116: 458-494
Bioremediation of water contaminated with crude oil per isolatin Bacillus from oily pound
Mohammadi F(MS.c) * AkhavanSepahi A (Ph.D) ** Mohammadi F(Ph.D) *** Amini M (BA) ****
*corresponding Author: MSc student, Department of microbiology, Islamic Azad university north Tehran Branch
**Associate Professor of microbiology, Department of microbiology, Islamic Azad university north Tehran Branch
***PhD student, Tehran University of medical sciences, Medical Mycology, Tehran University
****B.S in animal science, Department of Agriculture, Islamic Azad university Khorasgan

Abstract

Background: Water polluted with crude oil or oil materials are one of the life environment. Bioremediation is a simple method and economical for cleaning polluted water. The aim of this survey is to check the degradation of crude oil power with separated Bacillus from crude oil in Isfahan oil refinery.

Methods: For this purpose polluted water with crude oil is used in Isfahan oil refinery. Choosing cases were cultured in the MSM medium and 10000 ppm oil are used in this as an only carbonated bacteries sources. This cultured medium was incubated in a shaker with 150 rpm and 35 °C temperature. For separating generating biosurfactant bacterias, checking hemolytic activity as the first norm of separating and isolating. For checking the strength of crude oil degradation purified three strains and this three strains consortium put IR (infrared ray) test and GC-MS (gas chromatography - spectrometry). Purified Bacillus are reganized with biochemical and molecular diagnostic methods.

Results: Among twelve strains separating, eight strains were been able to lysis sheep erythrocytes and make hemolysis halo on medium blood agar. Strains that had hemolytic activity were chosen for later studying.
Surface tension of three strains were acceptable. The consortium of this three strains was surveyed on Biosurfactant out put and purified three strains got numbers of 38, 30, 34 mN/m and consortium got 28 mN/m. When sequences above put in the BLAST program, the results showed similarity of 99.8 percent of separated bacterias with Bacillus subtilis and Bacillus cereus. Identified two Bacillus were only different in to six nucleotid.

Conclusion: The surveys showed that consortium function in the biodegradation is more effective of Bacillus culture was alone, in fact consortium worked effectively in comparison with only Bacillus in the crude oil biodegradation on the polluted waters.
Keyword: Biosurfactant, surface tension, consortium, Bacillus subtilis, Bacillus cereus