طلاوع بهداشت

فلزمانه علمی بیزهوشی
دانشگاه بهداشت برد
سال پایه ۱۳۹۱

شماره مسلسل: ۳۵

تاریخ وصول: ۱۳۹۰/۸/۲۸
تاریخ پذیرش: ۱۳۹۰/۱۱/۱۹

بررسی و مقایسه عملکرد سولفات آلومینیوم و پلی آلومینیم کلراید (PAC) در تصفیه فاضلاب صنعت روغن کننده زیتون

نویسنده‌گان: احمدراز پردازپرداز فیاض مهدی پور، فرشید قبیری، اامحمد زمانی، هاجر شریفی ملکی، سید مهدی صفری

در این مطالعه سطحی تحقیقی، عملکرد سولفات آلومینیوم و پلی آلومینیم کلراید (PAC) در تصفیه فاضلاب صنعت روغن کننده زیتون اشکال مختلفی از زیتون کاغذی در پایلوپیایی هستند. فاضلاب صنعت روغن کننده زیتون به عنوان یک محصول به کار برده می‌شود که به کمک کمک کارگرها با کمک باردارهای آبی در بالا انجام می‌شود. باید به توجه بود. نتایج نشان داد که با توجه به تجربه، تغییراتی در فشار، جریان، هوا و آب به وجود می‌آیند.

چکیده

فاضلاب صنعت روغن کننده زیتون در جهان یک فعالیت مهم اقتصادی محصول مواد اولیه زیست محسوب می‌شود. این فاضلاب شامل فرآیندهای مختلفی است که شامل تهیه روغن کننده زیتون، پردازش زیتون، نگهداری و ذوب روغن کننده زیتون می‌باشد.

روش بررسی: این مطالعه در مقیاس آزمایشگاهی و به صورت نایپوشته بر روی فاضلاب واقعی انجام شد. فرآیند انتقاد با استفاده از مواد متعددی شامل آکلیم و پلی آلومینیم کلراید انجام گرفت و میزان حذف پاک‌الدینی کلرکس TSS، کل ترکیبات فنیکس، BOD و COD مورد بررسی قرار گرفت.

پایگاه: نتایج نشان داد که بالاترین راندمان حذف آلیانس‌ها در pH و دوز بهینه پلی آلومینیم کلراید به ترتیب ۷ و ۱۰۰۰ حاصل گردید و در این شرایط میزان حذف کدورت توسط پلی آلومینیم کلراید به ترتیب ۸۸/۲ و ۹۹/۲ درصد حداکثر گردید. همچنین تاثیر گیری BOD/COD نسبت به شان داش که این افزایش بعد از ترکیب ۱۴/۵ به ۱۱/۸ به ۱/۰ افزایش یافت.

نتیجه‌گیری: این مطالعه نشان داد که فرآیند انتقاد با استفاده از ماده متعددی کننده پلی آلومینیم کلراید می‌تواند به عنوان روش پیش‌تر و اقتصادی در کاهش بار آلاینگی این نوع فاضلاب به کار گرفته شود. وارد های کلیدی: فاضلاب صنعت روغن کننده زیتون، تجزیه بیولوپیایی، تصفیه.
مقدمه

از مهم‌ترین عوامل آلودگی کوده میکروبی، فلزات، آتشفشانی‌های متغیر و نیروگاهی‌های محیطی به‌دست آمده است. این مکانیزم‌ها در اوایل یافته‌های اجتماعی ساختنی به‌شمار می‌رود. در حال حاضر، مطالعات گسترده‌ای از این موضوع انجام شده است. این تحقیق به‌صورت گروهی از بیش از ۲۰۰۰ خانواده مختلف در جهان تولید شده است.

به فرضیاتی که در دسترس هستند، این آمارها ساختار اجتماعی و سطح زندگی را نشان می‌دهند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکروبی و اجتماعی در نتیجه‌های محیطی‌زا و نیروگاهی در محیط زیست شناخته می‌شوند. به‌طور کلی، این آمارها نشان می‌دهند که عوامل میکرو
منشأتی اولیه نمونه فاضلاب خام شامل کل و روش فیزیکی - شیمیایی، تکنیک نسبتاً ساده ای است که بطور گروهی در تشخیص آب و فاضلابهای صنعتی استفاده می‌شود. این روش به اندازه تصفیه جهات افزایش نیست در فاضلابهای صنعتی پیشنهاد شده است در این روش، تهیه آمونیاک، 18H₂O، و روش کلراید (PAC) آزمایش‌های لازم انجام گرفت. فاصله این روش توسط فشار و سیستم PHIPPS & BIRD STIRRED در استفاده می‌شود.

در این مطالعه آزمایش جاری انجام می‌شود. مراحل تکثیرات تند به مدت یک دقیقه و سرعت 100 دور در دقیقه، اختلاف کننده به مدت 30 دقیقه با سرعت 20 دور در دقیقه نئنشینه به مدت 1 ساعت استفاده گردید سپس به‌طور ماده معناد وضع کننده بر اساس عملکرد و حذف آلودگی انتخاب گردید. همچنین در این ویژه‌های برای عمل انجام نیز تعیین گردید.

توصیه PH و مدل Jenway مدل 3305 pH متر به مدت 2540 D استفاده می‌شود. البته روش BOD سنجی، 5220 B تست انجام می‌شود. تا پیشتر طیف‌سایر (manometric) OxyTop و کل KOD/SST، می‌تواند شرکت HACH شرکت آمریکا در طول موج 500 نانومتر بر اساس رنگ سنجی با 4-آمینو آنتی پیبرین سه‌پروتئین قرار گرفت.

روش بررسی

این مطالعه از تجربی و در مقیاس آزمایشگاهی انجام شده است. نمونه‌های مورد مطالعه یک‌میلی‌متری از خروجی فاضلاب حاصل از فاصله‌های مختلف زینتون (روش استخراج سانتریپوزیف) از یک کارخانه واقع در شهرستان طارم استان تهران، به صورت نمونه برداری مركب 24 ساعت تهیه و در ظروف بلی ایزودی به آزمایشگاه شیمی آب و فاضلاب دانشگاه بهداشت دانشگاه علوم پزشکی شهید بهشتی منتقل و نا زمان آزمایش در یخبندان نگهداری گردید.
بررسی و مقایسه عملکرد سولفات آلومینیوم و بی‌پرگاه کلراید (PAC) در تصفیه فاضلاب...

نتایج با استفاده از نرم‌افزار SPSS نشان داد که کاهش قابل توجهی از تراکم مذهمیتی در آزمون آماری تی استانداردFP و کندورت در مرحله انتقال ذرات در طول هر اجرای نمونه‌سازی نشان می‌دهد. در شکل ۵ نتیجه مربوط به مقایسه نسبت BOD₅/COD در نمونه فاضلاب‌های داخل و خارج از خانه و نمونه‌های حاصل از فرآیندهای اندازه‌گیری با میزان متوسط کننده بالای آلومینیوم کلراید و آلومینیوم هندی داده شده است.

جدول ۱: آزمایشات فیزیکوchemیایی و شیمیایی فاضلاب تصمیم‌گیری صنعتی روانگی کنی شیپن‌رنگ

<table>
<thead>
<tr>
<th>واحد</th>
<th>منشأ</th>
<th>pH</th>
<th>TSS</th>
<th>COD</th>
<th>BOD₅</th>
<th>BOD₅/COD</th>
<th>TP</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td></td>
<td>5.07</td>
<td>2477</td>
<td>880</td>
<td>829</td>
<td>0.14</td>
<td>444</td>
<td>1020</td>
</tr>
</tbody>
</table>

![Graph showing removal efficiency of different parameters in pH range 4 to 11](image-url)

(\(\text{PAC}=500 \text{mg/L}\) در فرآیند انتقال (PAC) برای حذف TSS و TP. COD pH از ۴ تا ۱۱)
شکل ۲: نمودار تأثیر غلظت PAC برای حذف TSS و TP، COD در فرآیند انفکاد (pH=۷)

شکل ۳: نمودار تأثیر مقدار pH برای حذف TSS و TP، COD در فرآیند انفکاد (mg/L=۲۰۰۰)

شکل ۴: نمودار تأثیر غلظت آلوم برای حذف TSS و TP، COD در فرآیند انفکاد (pH۱=۱۰)
بیانگری: رای نهایی...
References

1- Shayegan J, Afshari A. The Treatment Situation of Municipal and Industrial Wastewater in Iran. Sharif University of Technology; 2004. [Persian]
11- EVCIL H. Pretreatment of olive oil mill wastewater. Graduate School of Natural and Applied Sciences of Dokuz Eylül University; 2005.


Survey and Comparison of Aluminum Sulfate and Poly Aluminum Chloride (PAC) in Olive Oil Mill Wastewater Treatment

Yazdanbakhsh AR (Ph.D)* Mahdipour F (MS.c)** Ghanbari F (MS.c)*** Zamani A (MS.c) ***Sharifmaleksari H(MS.c) ***Safdari M (MS.c) ****

*Associate Professor of Environmental Health Engineering, School of Health - shahid Beheshti University of Medical Sciences – Tehran-Iran
** Master of Sciences student in Environmental Health Engineering, School of Health - shahid Beheshti University of Medical Sciences– Tehran-Iran
Corresponding author.
*** Master of Sciences student in Environmental Health Engineering, School of Health - shahid Beheshti University of Medical Sciences– Tehran-Iran
**** Master of Sciences student, Department of Health Services, Faculty of Health, Shahid Sadoughi University of Medical Sciences-Yazd- Iran

Abstract

Background: Olive oil extraction in the world is considered an important economic activity. Environmental impacts of olive oil wastewater is related to the chemical contents and organic materials load that are resistant to biodegradation. Olive wastewater due to phenolic compounds, inhibitors, toxicity to microorganisms in municipal wastewater treatment units, unpleasant odor, high COD, high BOD, high suspended solids, high resistant compounds to biodegradation, the threat potential to surface and underground water resources is to be considered and paid attention to. So far, several studies in olive oil mill wastewater treatment are carried out. This study aimed to determine efficiency of coagulation process in olive oil wastewater treatment to reduce pollution load and improve the biological degradability.

Methods: This study was conducted in laboratory scale and Batch reactor on the real wastewater. Coagulation process using alum and polyaluminum chloride (PAC) coagulants was done and the removal value of COD, TSS and total phenolic compounds was investigated.

Results: The results demonstrated that the highest removal efficiency of pollutants in the optimum pH and dose of PAC achieved turned out to be 7 and 1000 mg/L respectively. In these conditions, the removal values of COD, TSS and total phenolic compounds by PAC achieved were 88.3, 90.2 and 99.2%, respectively. Also analysis of the ratio of BOD/COD showed that after coagulation process, the value could increase from 0.14 up to 0.58.

Conclusion: This process can be regarded an effective and economical method in the reduction of pollution of this type of wastewater.

Keywords: Olive oil wastewater, Biodegradability improvement, Coagulation, PAC