ارزیابی عملکرد انواع فرآیندهای فنوتون در ترکیب با فراآیند انقاد و لختی‌سازی

متدول در تفیض شرایط محل دفن

نویستگان: محمدعلی زوژولی، دیج الی یوسفزی، اکبر اسلامیمیر باقری آردیلیان

استاندارد آزمایش‌های گروه معنادار به‌منظور بهبوداقیان و زیست‌محیطی دانشگاه علوم پزشکی مازندران

نویستگانی: ارشد مهندسی به‌منظور بهبوداقیان و زیست‌محیطی دانشگاه علوم پزشکی مازندران

E-mail: z.yousefi2004@gmail.com

چکیده

 سابقه و اهداف: فرآیندهای اکسیداسیون بیشتر و نظیر فنوتون و فتو فنوتون به طور مورثی برای اکسیداپن ترکیبات آلی مقاوم و نیازی آن‌ها به مواد به‌جود نشون می‌دهند. با این حال، اطلاعات اندکی در مورد

بیش از چهار فنوتون اصلاح شده در تولید تولید این‌گونه شیراپ و وجود دارد. بنابراین، هدف از این مطالعه تصفیه شیراپ بهاره و یونان پیش‌تر می‌باشد.

روش بررسی: این مطالعه یک مطالعه تجربی است که با استفاده از سیستم پایلوت آزمایش‌گاهی انجام شد.

شیوه فنوتون فتو فنوتون و فنوتون اصلاح شده به ترتیب 89 و 88/82 درصد بود. در هر دو فرآیند میزان

افراش می‌باید که در فرآیند فنوتون یون از دو فرآیند دیگر می‌باشد. نتایج گیری: فرآیند فتو فنوتون با بیش‌ترین رضایت رضایت به بهبود افزایش می‌باشد. اما هنوز مشکلات به‌هم‌پاره‌شدن آن بیش از دو فرآیند دیگر می‌باشد. کارایی فنوتون اصلاح شده کمتر از دو فرآیند دیگر

پایه‌ها: نتایج این تحقیق نشان داد که فرآیند انقاد و لختی‌سازی متدول با کلر کریک در شرایط بهینه

تاریخ وصول: 1399/04/28

تاریخ پذیرش: 1399/04/29

شاخص مسلسل: 125

شاخص ناپایداری دانشکده بهداشت بهداشت و پزشکی مازندران

سامت: دکتر سید مجید صدری

فاصله علمی بی‌روهی

دانشکده بهداشت بهداشت و پزشکی مازندران

سال 1391

شماره کتاب: 1391/4

شماره مسلسل: 125

نام و نام خانوادگی: محمدعلی زوژولی

نام و نام خانوادگی: دیج الی یوسفزی

نام و نام خانوادگی: اکبر اسلامیمیر باقری آردیلیان

نام و نام خانوادگی: محمدعلی زوژولی

نام و نام خانوادگی: دیج الی یوسفزی

نام و نام خانوادگی: اکبر اسلامیمیر باقری آردیلیان

تاریخ ناپایداری: 1399/04/28

تاریخ پذیرش: 1399/04/29
امروزه روش دفن بهداشتی مواد زائد شهروی و صنعتی، گستره‌ی دریچین و اقتصادی‌ترین رو به برای دفع مواد زائد جاده می‌باشد. یکی از مشکلات اساسی و بزرگ دفع مواد زائد جاده به روش دفن بهداشتی تولید شرایط می‌باشد. کمیت و کیفیت شیرای در هر محل دفن و فضاهای مختلف، سیستم به شیوه دفن و سن محل دفن، روش‌های دفن و نحوه‌ی دفن باید به شیوه مورد استفاده در صورت عدم مدیریت صحیح، می‌تواند موجب آلودگی منابع آب‌های سطحی و زیرزمینی گردد(1). یکی از گونه‌های مدیریت شرایط جمعیتی و تصفیه آنها می‌باشد. فرآیندهای متدال تصفیه شهری در تصفیه شیرای به‌طور عمده از: انواع فرآیندهای هوازی و هوازی و فرآیندهای تصفیه شیمیایی(2) تشکیل می‌گردد. شرایب تولید نهایی از ترکیبات آمی نیشینه که به روش زیستی گرمای تجزیه به بسیاری تجزیه می‌شوند، به ترتیب شیمیایی از جمله اکسیداسیون پیشرفته ناز خواهند داشت. بیشتر آنها از شیرای قدیمی بوده و مراحلی از تجزیه زیستی را تکنیکی نموده‌اند. در حال حاضر، اکسیداسیون پیشرفته که طول می‌گیرد در اکسیداسیون پیشرفته از قبل از شیرای زیرین و غیره، می‌تواند برای تصفیه و حذف سیاره‌ی از آلاینده‌های مسی و مقاوم به تجزیه زیستی، کمک کند. پیش از این که فرآیندهای جدید بهروز و امکان فازیابکانی به شیوه‌ی این ترکیبات آمی اجرا شود، در این فرآیندها تولید شرایب در مقایسه با روشهای توزیع و به‌طور کلی تجزیه و غیر مضر نبوده. این فرآیندها نهایی به شیوه‌ی معدنی‌سازی و تولید
عملاکرد فرآیندهای فتو-فتو و فتو-فتو نیز بر روی تصفیه شیرابه با شرایط ذکر شده در این مطالعه و مقایسه کارایی این فرآیندها با فرآیند فتو-افلاتو اصلاح شده تاکنون انجام گرفته است. لذا هدف از این مطالعه تغییر اثر فتو-فتو، فتو-افلاتو اصلاح شده و فتو-فتو-فتو فنجان بیشتری و مصرف مصرف از انفراج و لتخمه سازی در تصفیه شیرابه و مقایسه این فرآیندها با یکدیگر و مهندسی تغییر ناظر بارا و تألیف مختلف بر راندمان تصفیه می‌باشد.

منشأیات راکتور فرآیند

جهت انجام فرآیندهای انفجار و لتخمه سازی، فتو و فتو-فتو اصلاح شده از دستگاه جارتنت شش پاروئی و جهت انفجار فرآیند فتو-فتو از راکتوری که در شکل 1 اشاره داده شد با شرایط زیر استفاده شد: ابتدا راکتوری از جنس پیرکس با استفاده از یک بذر 2 لیتری، به قطر 24 سنتمتر و ارتفاع 18 سانتی‌متر به نهاد شد. سپس لامپ 150 وات فشار متوسط UV به طول 1/5/5 سانتی‌متر و قطر 1 سانتی‌متر و پوشش کوآرتزی به قطر خاتمی 2 میلی‌متر، قطر داخلی 22 میلی‌متر و طول 3/5/5 سانتی‌متر در طول درب راکتور که از جنس فیل آلومینیوم چندلاهای بود، نصب گردید. سپس از گرد و غیر این نهاد نمونه‌برداری در درب راکتور تعیین شد که به هنگام انجام فرآیند با فیل بیشتری بود. اطراف راکتور شاملج، از ترانس مخصص لامپ 150 وات فشار متوسط استفاده گردید. یک طول موج منشأه از لامپ UV مورده استفاده در این مطالعه 1/7/7/7 نانومتر و از نوع C بود. اطراف راکتور بیشتری از تصفیه در برای اشتهای UV لامپ با فیل آلومینیوم پوشانده شد. استفاده در راکتور با استفاده از همزمان مغناطیس و مگنت انجام گرفت (9). در داخل راکتور 5/5/5 سانتی‌متر ارتفاع آزاد جهت حرکت مگنت در نظر

تجزیه آب‌های آلی را به‌طور می‌بخشد. تولید بیشتر رادیکال‌های هیدروکسیل در تکریک با ترکیبات اکسیدان و کاتالیست‌های فلزی در حضور نور UV یکی از مزایای جدای این روش محصول می‌شود. قابلیت کاربرد فرآیند فتو-فتو-فتو در شرایط زائله نیز گزارش شده است. (9) می‌توانه فتو-فتو اصلاح شده عبارت است از افزودن مرحله‌ای H_2O_2 و و نمک آهün به محلول‌های آلی است. (10) و اکتش فتو-فتو اصلاح شده H_2O_2 یا Fe^{3+} توسط مطالعات مختلف در زمینه اکسیداسیون پیشنهاد شیرابه با فتو-فتو-فتو (15، 12)، فتو-فتو نکید (17)، سه فرآیند فتو-فتو و فتو-فتو و شیب فتو-فتو (9) در خارج از کشور انجام گرفته است که دلیل بر راندمان مؤثر این روش‌ها در تصفیه شیرابه می‌باشد. اما بررسی می‌توان نشان می‌دهد که در داخل کشور مطالعات محدودی انجام شده است. نظر مطالعات فرخی و همکارانش در سال 1/3/8 در زمینه بهبود قابلیت تجزیه پیشنهاد شیرابه زایل به روش اکسیداسیون H_2O_2 و مطالعه ملکوتیان و همکارانش در زمینه بررسی تصفیه پیشنهاد شیرابه تولیدی از پسماند جامد شهی کرمان با COD حدود 1/3/8/1 میلی‌گرم بر لیتر با استفاده از فرآیند فتو-فتو (19). اگر این مطالعات از فتو-فتو استفاده نموده‌اند و کاربرد فرآیند فتو-فتو و فتو-فتو اصلاح شده جهت تصفیه شیرابه کمتر مورد توجه قرار نگرفته است. توجه به روش‌های جدید تصفیه شیرابه و کاربرد روش‌هایی نظری فرآیند اکسیداسیون پیشنهاد در کشور ضروری می‌باشد. باید توجه به بررسی‌های پیش آمده و مطالعات گذشته مطالعات زیادی در زمینه عملکرد فرآیند فتو-فتو اصلاح شده در تصفیه شیرابه، در جهان انجام گرفته و تبعین
روش بروزی

این تحقیق یک نوع مطالعه تجربی بوده که شیوه کمک نمونه برداری شده از محل دفن زباله شهر قائم شهر واقع در استان هرمزگان انجام داده شد. مدت زمان مورد استفاده گرفته و مدت زمان تعطیلی جهت نمونه‌برداری برای تعیین مقدار COD به 20 دقیقه و مدت زمان تعطیلی جهت نمونه‌برداری برای تعیین مقدار CH2O به 30 دقیقه و مدت زمان تعطیلی جهت نمونه‌برداری برای تعیین مقدار BOD به 60 دقیقه بود. تمام نمونه‌ها از نظر pH، اینه، مس، نور، گازهای کدیون، کربنات، نیترات و فسفات، بر اساس کتاب روش‌های استاندارد برای آزمایشات آب و فاضلات آنتیز، شفافیت UV از دسته‌گاه شدند. (22) جهت استانداردیت لامپ UV تهیه گردید. غلظت‌های که بهترین راندمان حذف را همراه داشته باشد، گزینه مورد نظر گرفته شد. آنگاه آزمایشات دیگری با ثبت نگه‌داشته خلق غلظت کلورر فریک (غلظت بیشینه) و تغییر pH در مقدار 3، 5، 6 و 7 عمل جاری‌ترین فاصله عادی نتایج شد. (21)

که بیشترین راندمان حذف را دارد، به عنوان بیشینه pH چنان‌که، انتخاب واحد باعث انتخاب بهترین pH قرار داشته باشد. (21)

در pH چنان‌که، بیشترین نتایج حذف را دارد به عنوان بیشینه pH قرار داشته باشد. (21)
شکل 1: شماتیک راکتور مورد استفاده در فرآیند فتو-فنتون

(1) ترانس لامپ 150 وات، (2) راکتور شیشه ای، (3) میر، (4) مگنت، (5) همزن متغیری، (6) درب راکتور، (7) لامپ 150 وات فشار متوسط، (8) پوشش کوارتز، (9) بیب، (10) مخزن آب، (11) لوله های اتصال آب.

یافته‌ها

فرآیند اپکسی‌سازی و لخته‌سازی (پاش تصفیه) در این بخش از فرآیند پاش تصفیه در کاهش شیرابه COD مورد بررسی قرار گرفت. در این قسمت از مطالعه، کلرور فریک بعنوان ماده منعقد کننده در نظر گرفته شد و با استفاده از جاربست ابتدا، غلظت آن بهره گردید و سپس pH مناسب آن تعین شد. همان‌طوریکه در شکل 2 دیده می‌شود به علت انعقاد لخته‌سازی و تنشین غلظت بهره کلرور فریک 1000 میلی گرم بر لیتر بود که توانست/21% از شیرابه را حذف نماید. پس از بهره‌سازی غلظت کلرور فریک، به‌نتیجه تغییر pH، آزمایش جار انجام شد. همان‌طوریکه در شکل 2 مشاهده می‌گردد، به‌تهیه pH فرآیند انعقاد و لخته‌سازی با کلرور فریک، pH 5 و در فرآیند پاش تصفیه در این بخش از مطالعه از شیرابه تصفیه شده فرآیند انعقاد، لخته‌سازی و تنشین معادل استفاده شد. جهت بهینه‌سازی غلظت Fe^2^+ و غلظت H_2O_2 در بیش‌های 2 لیتری ریخته شد و

pH با تنظیم 3 و پس از اندازه‌گیری دما (در این مرحله $27^\circ C$ ± 2 درجه سانتی‌گراد بود) به مدت 150 دقیقه، با Fe^2^+ غلظت‌های مختلف H_2O_2 و Fe^2^+ تزریق شد. برای این کار، پس از انجم فرآیند، یک ساعت زمان تعشیب برای ترسیب و جن در نظر گرفته شد و از سویدناته قرار گرفته خروجی استفاده گردید. نتایج این آزمایش برای جدول 1 آمده است. لازم به ذکر است شرایط بهینه Fe^2^+ برای با Fe^2^+ نسبت H_2O_2 به Fe^2^+ $pH=3$، نسبت Fe^2^+ به H_2O_2 و نسبت H_2O_2 به Fe^2^+ در مطالعه دیگری تعین شده بود. همان‌طوریکه در این جدول دیده می‌شوید با افزایش غلظت Fe^2^+ و افزایش ضریب بهینه Fe^2^+ توان می‌توان Fe^2^+ همایش و لخته‌سازی با فنون در ترکیب H_2O_2 که شرایط بهینه H_2O_2 با لخته‌سازی نسبت 5000 میلی گرم در لیتر و H_2O_2 غلظت 65 میلی گرم در لیتر pH Fe^2^+ حاصل 3 اتفاق می‌افتند که در این شرایط راندمان حذف COD به می‌رسد.
فراشند فتونون با یک تصفیه
در این بخش از مطالعه، از شیراوه تصفیه شده فراشند انتقاد، لحاظ شده و تهیه شده است. جهت بهینه سازی غلظت Fe2+ و غلظت H2O2 در بشرهای 2 لیتری ریخته شد و با تنظیم pH بر روی 5 تا 7 پس از اندازه گیری دما (دا مدا در این مراحل 20 ± 5 درجه سانتی‌گراد بود) به مدت 150 دقیقه، با غلظت های مختلف Fe2+ و H2O2 و نسبت Fe2+/H2O2 برایFe2+ به H2O2 تهیه شد. با افزایش pH و زمان، غلظت های مختلف Fe2+ و H2O2 کاهش یافت و به لحاظ جسمانی‌گری انجام شد. در زمان 100 دقیقه تحت تصفیه قرار گرفت. پس از انجام فراشند، یک ساعت زمان

بعضی از انواع فراشند های فتونون در ترکیب با فراشند انتقاد و لحاظ سازی...
مقایسه عملکرد فرانآپنا

از آنالیژیک در آزمایشات فوق غلظت آب اکسیژن، بیون فرو و فریک و همچنین خصوصیات شیرابه پکس نود، قضاوت در

موردهای کارآمدتر مشکلی باشد. بنابراین این مورد تحلیل دقیق و کامل می‌باشد.

در این مطالعه آزمایش‌های کنترل به ترتیب جدول ۴ انجام شد که

میزان تغییر pH شیرابه در جدول آن‌دست است. در این مرحله جهت تنظیم pH از اسید سولفوریک غلظت و اسید

سولفوریک ۱۰ مولار استفاده گردید. آزمایشاتی که در آنها

اشعه UV وجود دارد، در راکتور UV و احتمال آنها با مکنت

و همون مغناطیسی انجام گرفت و آزمایشات بدون UV در

دستگاه جاری‌شده و با سرعت ۱۰۰ دور در دقیقه انجام گرفت.

مقدار زمان هر آزمایش کنترل ۶۰ دقیقه و مدت زمان تحقیقی جهت

نمونه‌برداری برای آزمایش COD ۵۰ دقیقه‌بود. همان‌گونه

که مشاهده می‌گردد، در ۲ مورد از فرانآپنا درصد تغییر

COD صفر بود و در ۶ مورد از این فرانآپناها نه تنها

کاهش پدیدا کرد، بلکه مقدار آن افزایش یافت.

جدول ۱: میزان حذف کل COD شیرابه بعد از انجام فرانآپنا انتقاد/ لختسازی و فرانآپنا فتون

<table>
<thead>
<tr>
<th>کل COD (درصد)</th>
<th>pH خروجی</th>
<th>pH اولیه</th>
<th>COD اولیه (mg/L)</th>
<th>pH قرارداد</th>
<th>COD قرارداد (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۲/۶۸</td>
<td>۳/۶۱</td>
<td>۳/۶۱</td>
<td>۵۲۰۰</td>
<td>۳</td>
<td>۷۸۵</td>
</tr>
<tr>
<td>۸۴/۳۸</td>
<td>۳/۶۱</td>
<td>۳/۶۱</td>
<td>۵۲۰۰</td>
<td>۳</td>
<td>۷۸۵</td>
</tr>
<tr>
<td>۸۶/۹</td>
<td>۳/۶۱</td>
<td>۳/۶۱</td>
<td>۵۲۰۰</td>
<td>۳</td>
<td>۷۸۵</td>
</tr>
<tr>
<td>۸۷/۱۸</td>
<td>۳/۶۱</td>
<td>۳/۶۱</td>
<td>۵۲۰۰</td>
<td>۳</td>
<td>۷۸۵</td>
</tr>
</tbody>
</table>

شواهد شیرابه

با توجه به تحقیقات مختلف در این زمینه، روش‌های مختلفی برای غلظت pH، Fe²⁺، H₂O₂ و pH کاربرد می‌باشد.
جدول ۲: میزان حذف کل COD شیرابه بعد از انجام فرآیندهای تخریب و فراورده فتوتوکسیک

<table>
<thead>
<tr>
<th>شرایط پیش تصفیه</th>
<th>شرایط فرآیند فتوتوکسیک</th>
<th>غلظت Fe^2+</th>
<th>غلظت H_2O_2</th>
<th>pH (mg/L)</th>
<th>pH (mg/L)</th>
<th>COD (mg/L)</th>
<th>COD (mg/L)</th>
<th>pH اولیه</th>
<th>pH اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تصفیه</td>
<td>۷۷/۱۴</td>
<td>۲۰۰</td>
<td>۵</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>تصفیه</td>
<td>۷۷/۱۴</td>
<td>۲۰۰</td>
<td>۵</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>تصفیه</td>
<td>۷۷/۱۴</td>
<td>۲۰۰</td>
<td>۵</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>تصفیه</td>
<td>۷۷/۱۴</td>
<td>۲۰۰</td>
<td>۵</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
</tbody>
</table>

جدول ۲: میزان حذف کل COD شیرابه بعد از انجام فرآیندهای تخریب و فراورده فتوتوکسیک

<table>
<thead>
<tr>
<th>شرایط پیش تصفیه</th>
<th>شرایط فرآیند فتوتوکسیک</th>
<th>غلظت Fe^2+</th>
<th>غلظت H_2O_2</th>
<th>pH (mg/L)</th>
<th>pH (mg/L)</th>
<th>COD (mg/L)</th>
<th>COD (mg/L)</th>
<th>pH اولیه</th>
<th>pH اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تصفیه</td>
<td>۸۸/۱۴</td>
<td>۲۰۰</td>
<td>۵</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>تصفیه</td>
<td>۸۸/۱۴</td>
<td>۲۰۰</td>
<td>۵</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>تصفیه</td>
<td>۸۸/۱۴</td>
<td>۲۰۰</td>
<td>۵</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>تصفیه</td>
<td>۸۸/۱۴</td>
<td>۲۰۰</td>
<td>۵</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
</tbody>
</table>

جدول ۲: میزان حذف کل COD در آزمایشات کنترل انجام شده

<table>
<thead>
<tr>
<th>آزمایشات کنترل</th>
<th>pH اولیه</th>
<th>pH اولیه</th>
<th>COD (mg/L)</th>
<th>COD (mg/L)</th>
<th>pH اولیه</th>
<th>pH اولیه</th>
<th>COD (mg/L)</th>
<th>COD (mg/L)</th>
<th>pH اولیه</th>
<th>pH اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2O_2</td>
<td>۳</td>
<td>۲/۴۱</td>
<td>۶۵۰۰</td>
<td>۵۶۰۰</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>H_2O_2</td>
<td>۳</td>
<td>۲/۴۱</td>
<td>۶۵۰۰</td>
<td>۵۶۰۰</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>H_2O_2</td>
<td>۳</td>
<td>۲/۴۱</td>
<td>۶۵۰۰</td>
<td>۵۶۰۰</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
<tr>
<td>H_2O_2</td>
<td>۳</td>
<td>۲/۴۱</td>
<td>۶۵۰۰</td>
<td>۵۶۰۰</td>
<td>۷۱۰۵</td>
<td>۷۱۱۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
<td>۸۳</td>
<td>۶۶۰۰</td>
</tr>
</tbody>
</table>
جدول ۵: شرایط انجماد همبسته فرآیند فتو-فنتون، فنتون اصلاح‌شده، فتو-فنتون، فنتون با یک تصفیه

<table>
<thead>
<tr>
<th>فرآیند</th>
<th>شرایط بینه تصفیه پیش‌تره</th>
<th>شرایط بینه تصفیه منصفه</th>
<th>شرایط بینه تصفیه پس‌تره</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان فرآیند (min)</td>
<td>Fe۴⁺ یا Fe۳⁺ غلظت</td>
<td>H۲O۲ غلظت</td>
<td>فیکر غلظت کالرور</td>
</tr>
<tr>
<td></td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td></td>
</tr>
<tr>
<td>۱۵۰</td>
<td>۶۵۰</td>
<td>۵۰۰</td>
<td>۵</td>
</tr>
<tr>
<td>۹۰</td>
<td>۶۵۰</td>
<td>۵۰۰</td>
<td>۵</td>
</tr>
<tr>
<td>۱۲۰</td>
<td>۶۵۰</td>
<td>۵۰۰</td>
<td>۵</td>
</tr>
</tbody>
</table>

جدول ۶: مقایسه عملکرد فرآیند ترکیبی در تصفیه شرایبه مطابق با شرایط جدول ۵

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>واحد</th>
<th>شرایبی خام</th>
<th>شرایبی پس‌تره</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار قد ون (mg/L)</td>
<td>COD</td>
<td>۳۴۵</td>
<td>۴۳۵</td>
</tr>
<tr>
<td>مقدار قد ون (mg/L)</td>
<td>BOD₅</td>
<td>۷۷۰</td>
<td>۴۲۰</td>
</tr>
<tr>
<td>مقدار قد ون (mg/L)</td>
<td>TKN</td>
<td>۵۳۰</td>
<td>۵۳۰</td>
</tr>
<tr>
<td>مقدار قد ون (mg/L)</td>
<td>BOD/COD</td>
<td>۹۹۸/۵۰۰</td>
<td>۹۹۸/۵۰۰</td>
</tr>
<tr>
<td>مقدار قد ون (mg/L)</td>
<td>COD</td>
<td>۳۴۵</td>
<td>۴۳۵</td>
</tr>
<tr>
<td>مقدار قد ون (mg/L)</td>
<td>BOD₅</td>
<td>۷۷۰</td>
<td>۴۲۰</td>
</tr>
<tr>
<td>مقدار قد ون (mg/L)</td>
<td>TKN</td>
<td>۵۳۰</td>
<td>۵۳۰</td>
</tr>
<tr>
<td>مقدار قد ون (mg/L)</td>
<td>BOD/COD</td>
<td>۹۹۸/۵۰۰</td>
<td>۹۹۸/۵۰۰</td>
</tr>
</tbody>
</table>

بحث و تحقیق گیری

در این قسمت ابتدا فرآیند انعقاد، لخته‌سازی و فتو-فنتون، به عنوان فرآیند پیش‌تیم و بدنان آن فرآیند فنتون، فنتون اصلاح‌شده فتو-فنتون در تصفیه شرایبها مورد بحث قرار می‌گیرند.

این گونه‌ای، لخته‌سازی یک فرآیند ضروری در تصفیه آب و

فاضلاب صنعتی می‌باشد (۳۲). انعقاد می‌تواند جهت حذف

آلاینده‌های از شرایب تیم ور مورد استفاده قرار گیرد و میزان اهمیت

آن بستگی به مشخصات شرایب و شرایط تکنولوژیک (۸).

آن بستگی به مشخصات شرایب و شرایط تکنولوژیک (۸).

انلاین مطالب به بررسی استفاده از انعقاد/لخته‌سازی جهت

تصفیه شرایب محل دفن و تهیه شرایب آزمایش برداشته‌اند.

سولفات آلومینوم (آلفوم)، سولفات آهن، کلسیم فریک، و

فریک کلسیم سولفات به طور رایج به عنوان معتقد کننده مورد استفاده

تُر کهَم ۴۵۰ سیلی‌گرم بر لیر میزان حذف

در این مطالعه در ۴۸/۵۴ سیلی‌گرم بر لیر کلرور ۴۵/۴۳ درصد و

COD=۴۹۶ به عنوان یک فرآیند ضروری در تصفیه آب و

COD=۵۴۳ به عنوان یک فرآیند ضروری در تصفیه آب و

در ۴۹۶ سیلی‌گرم بر لیر میزان حذف

COD=۵۴۳ به عنوان یک فرآیند ضروری در تصفیه آب و

COD=۴۹۶ به عنوان یک فرآیند ضروری در تصفیه آب و

COD=۴۹۶ به عنوان یک فرآیند ضروری در تصفیه آب و
لیتر نشان داد که در شرایط بهینه، بازدهی حذف

COD از آن 21/4 بود. در حالی که حذف

COD توسط کلرید

فیروک 28 بود. نتایج دلائل بر این داشت که بهینه برای

معنادار کننده آب و کلرید فیروک جهت تصفیه شیرا به شرایط

5 و 10 و غلظت معنادار کننده بترتیب 1400 و 1000 میلی گرم

بر لیتر بود (4). البته در مطالعه کنونی دامنه

مورد بررسی 3

تا 8 میلی گرم

نیترات مورسی قرار نگرفت. نسبت

به BOD بعد از تصفیه با BOD تغییری نکرد (25).

نتایج معنادار کننده در تصفیه شیرا به بازارهای متعادلی نظر

BOD/COD نسبت

غلظت. بازارهای معنادار کننده دارای

BOD/COD بیشتری دارند. مثالا:

واکنش به همکاریت در مطالعات که به تجربه تصفیه شیرا به پا

اوله 580 میلی گرم بر لیتر توسط فیروک ابعاد- اکسیداسیون انجام داده، با افزودن 1000 میلی گرم بر لیتر

ph به 6/6 حذف

COD در مقدار 3 مورسی مورد قرار گرفت و مقدار

BOD/COD 8-3 مورسی مورد قرار گرفت و مقدار

COD به شیرا تازه دارای

بازدهی تصفیه بیشتری بود (26).

تالی و همکاریت به مطالعه پیش تصفیه شیرا محل دفن زباله

با فیروک ابعاد- لخته‌سازی پرداخته‌اند. در این مطالعه، افزودن

معنادار کننده های فیروک یا آب به شیرا تازه دارای

بازدهی تصفیه بیشتری بود (26).

BOD/COD 8-3 مورسی مورد قرار گرفت و مقدار

COD گردد. بهترین میزان حذف با افزودن 5 گرم در لیتر

آب و میزان حذف با افزودن 4 گرم در لیتر

COD حذف 450 میلی گرم بر لیتر آب مورد بهبود آماده شده

۲۶/۳% نسبت

تغییری نکرد. در این مورد، بهترین میزان حذف

COD 3 گرم در لیتر، حدود 80/3 بود (23). مطالعات دیگران

COE تحصیل که از شیرا به شیرا

COD میزان حذف

COD در شرایط بهینه، بازدهی حذف

COD از آن 21/4 بود. در حالی که حذف

COD توسط کلرید

فیروک 28 بود. نتایج دلائل بر این داشت که بهینه برای

معنادار کننده آب و کلرید فیروک جهت تصفیه شیرا به شرایط

5 و 10 و غلظت معنادار کننده بترتیب 1400 و 1000 میلی گرم

بر لیتر بود (4). البته در مطالعه کنونی دامنه

مورد بررسی 3

تا 8 میلی گرم

نیترات مورسی قرار نگرفت. نسبت

به BOD بعد از تصفیه با BOD تغییری نکرد (25).

نتایج معنادار کننده در تصفیه شیرا به بازارهای متعادلی نظر

BOD/COD نسبت

غلظت. بازارهای معنادار کننده دارای

BOD/COD بیشتری دارند. مثالا:

واکنش به همکاریت در مطالعات که به تجربه تصفیه شیرا به پا

اوله 580 میلی گرم بر لیتر توسط فیروک ابعاد- اکسیداسیون انجام داده، با افزودن 1000 میلی گرم بر لیتر

ph به 6/6 حذف

COD در مقدار 3 مورسی مورد قرار گرفت و مقدار

COD 8-3 مورسی مورد قرار گرفت و مقدار

COD به شیرا تازه دارای

بازدهی تصفیه بیشتری بود (26).

تالی و همکاریت به مطالعه پیش تصفیه شیرا محل دفن زباله

با فیروک ابعاد- لخته‌سازی پرداخته‌اند. در این مطالعه، افزودن

معنادار کننده های فیروک یا آب به شیرا تازه دارای

بازدهی تصفیه بیشتری بود (26).

BOD/COD 8-3 مورسی مورد قرار گرفت و مقدار

COD گردد. بهترین میزان حذف با افزودن 5 گرم در لیتر

آب و میزان حذف با افزودن 4 گرم در لیتر

COD حذف 450 میلی گرم بر لیتر آب مورد بهبود آماده شده

۲۶/۳% نسبت

تغییری نکرد. در این مورد، بهترین میزان حذف

COD 3 گرم در لیتر، حدود 80/3 بود (23). مطالعات دیگران
سایر فراهم‌ها بیشتر بود. اورتو فسفر در فراهم فتو-فنتون و فنتون اصلاح‌شده برترب دارای بیشترین و کمترین درصد حذف بود. بطور کلی میزان حذف اورتو فسفر در همه آن‌ها به‌طور 95% از همه یا جزء‌ها بیشتر بود. آن‌ها در فراهم بدون نور انرژی یافته. بطور کلی بدلیل افزودن آن‌ها به همه UV فراهم‌ها با یکسان بود. در مسائل اصلاح‌شده در پساب خروجی و در لجن تولیدی افزایش یافته که یکی از محدودیت‌های UV فراهم‌ها یا پایه فنتون محصول می‌گردد. استفاده از نور UV می‌تواند میزان لجن آن‌ها و میزان آن‌ها در پساب خروجی را کاهش دهد. مس هم در فراهم‌های فنتون و فتو-فنتون دارای حذف بیش از 70% بود که عمدتاً میزان حذف مس در فراهم فنتون اصلاح‌شده و حذف ۲۸% بود. میزان حذف کروم هم در فراهم فتو-فنتون ۱۰۰% بود.

در مجموع با توجه به درصد‌های حذف بدست‌آمده در فراهم‌های انجام گرفته، می‌توان گفت که در تصفیه شیراوه، فراهم فتو-فنتون با پیش‌تصویف دارای بیشترین کارایی می‌باشد. باید به‌صورت درجه‌ای کمتر در نظر گرفته و در نتیجه تولید لجن آن کمتر در فراهم فتو-فنتون که از مزایای این فراهنگ محصول می‌گردد. در عمل نگهداری و بهره‌برداری از لاهم UV، بدلیل حجم گرفتن بیشتر مشکل بوده و هزینه‌های بهره‌برداری فراهنگ فتو-فنتون نیز بدلیل مصرف بر قیمت سیستم است. همچنین استفاده از UV لاهم UV بدون درنظر گرفتن موارد ایمنی در طول‌مدت و سپس ایجاد خطرات سلامتی می‌گردد. این شرایط بنظر می‌رسد که نیاز از فراهم فتو-فنتون در مقیاس و سیستم استفاده نمود.

 تحت شرایط بهبود فراهنگ فتو-فنتون مداوم، کاربرد نور UV بطوبر قابل توجهی میزان حذف COD و TOC و همین‌مدت بهبود افزایش نداد و Fe3+ مابین آن‌ها است. از آن‌ها تولید آهن فرسود استفاده می‌تواند تا حدود 30 برای جهت رسیدن به مقدار COD و TOC در فراهم فنتون کاهش یابد. استفاده از Fe3+ کمتر در این دانش که جرخه تولید نوری بیشتری برای تولید همان مقدار رادیکال هیدروکسی جهت حذف مقدار مشابه از UV مورد نیاز خواهد بود. بطور خلاصه، تعریف یکسرابی شرایط از نظر مقدار پراکسید هیدروژن و آهن فرسود، چه در فراهم فنتون و چه در فراهم TOC و COD می‌تواند به درصد حذف فراهنگ فتو-فنتون می‌تواند در حفظ و در مطالعات، فراهنگ فتو-فنتون به عنوان یک ابزار جدید برای تولید تولید سیستم‌های پاکسازی نیز توصیف شده. از نظر هزینه تولیدی، فراهنگ فتو-فنتون مداوم نیاز به عضویت بیشتری شرایب داشته و هزینه‌های دفع لجن بیشتر است و در فراهنگ فتو-فنتون هزینه تجهیزات و انرژی بالاتر است.(۱۶)

مطالعه می‌تواند به‌طور کلی با در می‌باشد. نسبت برترب دارای سطح هیدروژن Fe50-75% و Fe تا اکسیداسیون با استفاده از BOD/COD، فراهنگ فتو-فنتون و فتو-فنتون در مطالعات اختیاری به بسیاری رهبر، اشکال اصلی فراهنگ فتو-فنتون نیاز به انرژی الکتریکی نیست UV و در نتیجه افزایش هزینه تصفیه می‌باشد.(۲۷)

مطالعات دیگران نشان داد که میزان حذف عضویت شیراوه محل مصرف تغییر می‌کند. در مطالعات مختلف تغییر فراهنگ فتو-فنتون، فنتون اصلاح‌شده و فتو-فنتون در میزان مولی Fe3+ متفاوت از 0.01 تا 5 تا 85 درصد می‌باشد. این می‌باشد که احتمالاً بدلیل تفاوت در میزان حذف عضویت شیراوه و رویداد، نیز پیش توجه از ترکیبات شیراوه می‌باشد. (۸) میزان حذف عضویت شیراوه در فراهنگ فتو-فنتون اصلاح شده از TKN
References

Evaluation of the Different Fenton Processes Combined with Coagulation- Flocculation Pretreatment in Landfill Leachate Treatment

Zazouli MA (Ph.D)* Yousefi Z (Ph.D)** Eslami A(Ph.D)*** Bagheri Ardebilian M (MSc)****

*Assistant professor, Department of Environmental Health Engineering, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
**Corresponding Author; Associate professor, Department of Environmental Health Engineering, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
***Assistant professor, Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
****MSc in Environmental Health Engineering, Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran.

Abstract

Background: Advanced oxidation processes such as Fenton and photo-Fenton that have been applied effectively to oxide the persistent organic compounds in leachate and converts them to unharmful materials and final products. However, there are a few data about application of Fenton-like process in leachate treatment. Therefore, the aim of this study was to treat the municipal landfill leachate by above processes.

Methods: This study was an experimental study that was conducted with set up a pilot system. The used leachate collected from a municipal unsanitary landfill of Qaem-shahr city that located in Mazandaran province. All examinations and samples were analyzed according to Standard Methods for the Examination of Water and Wastewater.

Results: The results showed that the conventional coagulation & flocculation process with chloride ferric removed about 45% of COD in optimum conditions. The combining of pretratment with AOPs significantly increased removal efficiency so that the removal efficiency COD for Fenton, photo-Fenton and modified fenton processes was 89, 85.45 and 81.82 percent in the same conditions, respectively. After all processes, the biodegradability (BOD5/COD ratio) of treated leachate compared to raw leachate was increased and the highest increasing of BOD5/COD ratio was in the photo-Fenton process.

Conclusion: The efficiency of the Fenton-like process is less than Fenton and photo-Fenton processes. Instead, the Fenton-like process was done at the higher pH and will not have these problems.

Keywords: leachate treatment, advanced oxidation processes, photo-Fenton, Fenton, Fenton-like, landfill