طرح بهداشت

فصلنامه علمی پژوهشی
دانشگاه بهداشت ب زرد
سال پایانه: 1391
شماره: 35
تاریخ وصول 1390/7/20
تاریخ پذیرش 1390/7/22

بررسی عوامل موثر بر غلظت نیترات منابع آب شرب زیرزمینی شیراز با استفاده از سیستم اطلاعات جغرافیایی (GIS)

نویسنده‌ان: احمد بدری‌یزدانی، میرا علامی، احمد بدری‌جریف و احمد علی‌یزدانی

مقدمه: از اینجایی که بحران آب شرب زیرزمینی شیراز در جمع‌الصدای این سیاست‌گذاری‌ها و اقدامات بحران می‌باشد، به‌عنوان یکی از منابع آب شرب، از نظر غلظت نیترات در آب شرب به‌عنوان یکی از منابع آب شرب، مورد توجه و تحقیق قرار گرفته است.

هدف از این تحقیق: مطالعه ای از نسبت غلظت نیترات و نیترات در منابع آب شرب شیراز با استفاده از نرم‌افزار Arcview GIS 9/3 و SPSS و منابع تخصصی در زمینه تحقیقات آب و هوایی.

روش بررسی: تحقیق توصیفی 20 نمونه آب از 55 حلقه چاه شهر شیراز در فصول بررسی و کم‌پرس به صورت منظم از نمای جاهای بهداشت شد. آزمایش نیترات و نیترات با دستگاه اسپکتروفتوسیمتری انجام شد.

نتایج بدست آمده در نرم‌افزار Arcview GIS 9/3 و SPSS در میان 25 میلی‌گرم بر لیتر و میانگین 31/65 میلی‌گرم بر لیتر و میانگین 41 میلی‌گرم.

تنها کلیدی: غلظت نیترات، آب‌های زیرزمینی، شهر شیراز، سیستم اطلاعات جغرافیایی (GIS)
مقدمه

افزایش جمعیت، گسترش شهرها و صنایع و بالا رفتن استانداردهای زندگی باعث آلودگی محیط زیست، مخصوصاً منابع تأمین کننده آب آشامیدنی شده است(1). فرامنطقه در کشور ایران، مشکلات گسترده ای از جمله آلودگی آب را بهبودیابش است، این مسئله زمانی اهمیت بیشتری پیدا می‌کند که کشورمان در منطقه خشکک و بعید خشکات واقع است و آب‌های زیرزمینی حدود 5% مصرف آب شرب را تأمین می‌کنند(2). با توجه به کم‌بود آب و بحران خشکاتسی در سال‌های اخیر، اهمیت این آلودگی را روز بیشتری شده است. بیشترین خطری که در آینده به بحران کاهش می‌دهد، به دلیل افزایش آب‌های زیرزمینی است که انسان به طور عمد یا اتفاقی و یا در دنبال نسبت نگهداری و یا آگاهی وارد محیط‌های طبیعی می‌شود(3). فراوانی و شاید شاید آن‌الاینده ای که منابع آب زیرزمینی را تهدید می‌کند آلودگی این منابع توده گرانی آوری است که اندازه‌گیری و قیمت ندارد. گزارش‌های اخیر از تهیه قیمت مناسب آلودگی این منابع آب زیرزمینی را تهدید می‌کند. برای حل بحران‌ها و مشکلات منابع آب با استفاده از ارزیابی کیفیت آب، نیاز به پیشگیری، شناسایی و محاسبه منابع آب از طریق شرایط محیط و منطقه به عنوان یکی از پیشگیری از آلودگی ناشی از آلودگی آب زیرزمینی به فضای مناسب و حفاظت از آن است(4). الی و همکاران در ارزیابی نیازهای آب با استفاده از GIS و کشوری بیشتری ناشی را در افزایش غلظت نیازات در فصول کم بارش و اراضی با کاربری مسکونی و تجاری نیز باعث افزایش غلظت نیازهای در فصل پر بارش شده است(5) در پژوهش دیگری، غلظت نیازهای در فصل مطابق کمتر از فصل خشک بسته آمد(6). در یکی از تحقیقات در کشور ترکیه، اقامت
روش بررسی

مطالعه از نوع توسعی می‌باشد، براساس اطلاعات بارش و بارش دیگر گذشته سازمان هوشمندی شیار پیشین بارش در دو ماه دی و بهمین (زمان پرتاب و رخت می‌دهد) در حالی که تر و مرماد

مادهای خشک سال می‌باشد و کمترین بارش ها را دارند.

به منظور بررسی روند تغییرات نیترات و عوامل مولتیپل از 55 منبع شرب زیرزمینی در دشت شیراز در فصل بر بارش دو نویت و فصل خشک سال 1389 و 1400 در نویت که مجموعا از هر چهار نمونه برداشت شد، در مجموع 220 نمونه بدست آمد. نمونه برداری به صورت منظم در تمام جایا انجام گرفت، نمونه ها در ظروف بلاستیک برداشت و پس از 1/5 ساعت به آزمایشگاه جهت انجام آزمایش نیترات متوقف شدند. سنجش میزان نیترات و نیترات به ترتیب با استفاده از دستگاه Hach امپکروفوتومتر (Standard Method 4500UV) با طول موج 220 نانومتر (دل) و (Standard Method 4500) ساخت کشور آمریکا Hach صارت گرفت. تایپ بست ArcviewGIS9.3 SPSS و پهنه بندی و تحلیل شدند.

برای تعیین روند تغییرات غلتقه نیترات، داده های مربوط به نیترات در دو سال گذشته جایا وارد نم افزار آماری SPSS(12) شدند. با استفاده از این داده ها، روند تغییرات غلتقه نیترات در طول زمان دهسهای اخیر محاسبه گردید سپس به کمک ضریب و نیز روند تغییرات شب منحنی بدست آمدی، غلتقه نیترات جایا در سالهای آینده با استفاده از روش حداقل GIS به نهش نقص کیفیت آب‌های زیرزمینی شهر قونه در محیط شدو نتایج نشان داد که آب‌های زیرزمینی بخش جنوب غربی شهر قونه دارای بالاترین کیفیت هستند(17). نتایج مطالعه و مدل‌سازی احتمالی از آب‌خوان شهر ری تا تابد کرد احداث شکه جمع آوری فاصله باعث کاهش غلتقه نیترات خواهدشد (18).

میزان غلتقه ترکیبات غلتقه در منابع آب زیرزمینی و شیای کاهش تحلیل نیترات به این آنها خواهد شد (19). جایه‌ای آب شرب شیراز بدون اینکه در فاصله شهروایان وضع شده اند و نیز عدم تکمیل و احداث کامل شکه جمع آوری فاصله در شهر شیراز، همچنین مطالعات گسترده کشاورزی و استفاده از کودهای شیمیایی و حیوانی انظار میوز غلتقه ترکیبات غلتقه در منابع آب زیرزمینی روند رو به افزایش داشته باشد، این شرایط به همراه اهمیت ترکیبات نیترات و نیترات در آب آسان‌سازی و ناشی هوا و سوی آنها بر سلامتی، مایا بر آن داشت تا مطالعه غلتقه نیترات و ممنع و منشا آن در دشت شیراز را مورد بررسی قرار دهد، بنابراین در این مطالعه عوامل محیطی ناشی از توسه شهروایی و تراکم جمعیت و تأثیر احتمالی بافت شهری بر این جایا مورد بررسی قرار گرفت تا این طریق منشا آب‌دگی به نحو موترکی شناسایی گردد. در این تحقیق ارتباط غلتقه نیترات منابع زیرزمینی با عمل جایا، تعیین غلتقه مکانی نیترات در دو فصل پرتاب و کم بارش، به نهش نقص بهبود نیترات غلتقه نیترات در دشت شیراز با استفاده Arcview GIS 9.2 مورد ارزیابی قرار گرفت.
شیمیایی به صورت جدول به نفع های فوق الحاقی شدن. برای تعیین تغییرات مکانی غلظت نیترات، نفشه پهنی بندی شده غلظت نیترات در دو زمان خشک و تر در دشت شیراز ترسیم گردیده. همچنین نفشه اکثر مناطق فاقد شکه جمع آوری فاضلات شری و نفشه پهنی بندی غلظت نیترات براساس شیمیسم اطلاعات چهارراهی ترکیب وتنهای شد. بر اساس شب منطقه غلظت نیترات چهارراهی مورد مطالعه نسبت به رودخانه مورد بررسی قرار گرفت. با استفاده از اطلاعات لوگر نفشه جاهایی پیش‌تر دشت شیراز نفشه ایزو پتانسیل ومسیر جریان آب در دشت به‌دست آمد.

یافته‌ها

در حال و حداکثر غلظت نیترات چهارراهی بافت مرکزی وجدال شرقی شهر شیراز به ترتیب، ۱۰ و ۳۰ میلی‌گرم بر لیتر بوده است. غلظت نیترات در دشت چهارراهی بخش غربی دشت شیراز به ترتیب با حداکثر ۸ تا ۷ میلی‌گرم بر لیتر به ترتیب در دشت آمد، این میزان برای چهارراهی شمال منطقه مورد مطالعه ۹۰ میلی‌گرم بر لیتر بود. بر اساس نتایج، غلظت نیترات در ده ساله روند افزایشی داشته است وانظار می رود درس‌الله‌ای آن‌های این روند افزایشی ادامه یابد. مدل ریاضی تغییرات میانگین سال‌های نیترات چهارراهی دشت شیراز بر اساس روش حداکثر مجموع مربعات رابطه خطی (معادله رگرسیون) شماره ۱ را نشان می‌دهد. بر اساس این رابطه بیشتر بینی مقادیر میانگین سال‌های نیترات در صورت حفظ شرايط در سال های آتی مطلوب شکل ۱ خواهد بود.

مجموع مربعات خطی با مدل رگرسیونی نک متمرکز محسوب و برآورد شد. برای این کار ابتدا معادله‌بر اندندند، سپس معنی دار بودن مدل آموزن گردیده. همچنین مقداری در جز معادله با استفاده از عملیات آماری تعیین شد. نتایج دست‌آمده تا نمونه برداری نسبت به فصول کم بارش ور بارش مورد ارزیابی قرار گرفت تا ارتباط بین غلظت نیترات و فصول کم بارش ور بارش باشد و در آب‌های حوضه مورد مطالعه با حدود اطمینان ۹۵٪/استفاده شد. از ترسیم نفشه، بررسی گرمی شرکت و تجزیه وتحلیل داده های مکانی بروش درون سی ای برای تعیین عوامل موثر بر نیترات آب‌های زیرزمینی دشت شیراز استفاده شد. برای این کار ابتدا داده مکانی مربوط به منطقه مورد مطالعه شامل نفشه کاربری اراضی، نفشه زمین شناسی، نفشه توپوگرافی دشت شیراز و نفشه بیشتر جمع آوری فاضلات شیراز با مقیاس ۵/۰۰۰/به‌نها شد. نفشه کاربری اراضی به عنوان نفشه پایه بر کار گرفته شد. ویرای نفشه نیترات به وضوح دیده وویژگی‌های وعوضر مختلف در محیط GIS ثبت شد. نفشه کاربری اراضی با مختصات تصویری زمین مرجع شد.

سپس نفشه های دیگر با استفاده از نفشه کاربری اراضی مختصات دار شدند. در مرحله بعد آنها در محیط سیستم اطلاعات جغرافیایی به صورت نقطه پایه ای، خطی وسطحی(پلو گون) رقیق شدند. با بدست آمده مختصات ۵۵/حلقه‌های مورد مطالعه، جاهایی در نفشه رقیق محسوب سیستم اطلاعات جغرافیایی موقت‌بیابی شدند. مشخصات جاهای شامل عمق جاهای، سطح ایستایی به همراه داده های اندوزه گیری شده
در شکل نشان داده شده است، میانگین سالانه نیترات در صورت حفظ شرایط موجود در 5 سال آینده به بیش از 37 میلی گرم بر لیتر خواهد رسید. نتیجه 3 تکیه به یکی غلظت نیترات جاهایی را با نقشه اتوکدی شیبکه جمع آوری فاصلاب شهری نشان می دهد، آن طور که مشخص است اکثر مناطق فاقد شیبکه جمع آوری فاصلاب دارای غلظت بالای نیترات می باشند. کمترین و بیشترین غلظت نیترات به ترتیب مربوط به بخش غربی و بخش جنوب شرقی دشت شیراز می باشد. بر اساس معادله ۱ به ازای یک واحد افزایش X و یک نگیر سال به سال بالاتری ۸۲/۷ واحد به میزان نیترات افزوده می شود. نتایج نشان داد با افزایش عمق چاه، غلظت نیترات کاهش یافته است.

(معادله ۱) x ۰.۲۸ + ۰.۶ = y

نتایج حاصل از نمونه برداری در جدول ۱ نشان دهنده آن است که غلظت نیترات در ۷۰/۴ نمونه ها بالاتر از حد طبیعی و ۱۴/۷ نیز بالاتر از میزان رهنمودی ۵۰ میلی گرم بر لیتر سازمان بهداشت جهانی وحد استاندارد کشوری بود.

شکل ۲ نشان دهنده بخش بینی میانگین غلظت نیترات در سالهای آتی (۱۳۹۵-۱۳۹۷) با استفاده از معادله ۱ است. همانطوری که...

![شکل ۱: منطقه مورد مطالعه](image)

جدول ۱: آمار توصیفی میزان نیترات در جاهای مورد بررسی بر حسب فصل برای کم و بارش

<table>
<thead>
<tr>
<th>فصل برای</th>
<th>۱ /۱۶</th>
<th>۷ /۷۸</th>
<th>۸ /۷۲</th>
<th>۴ /۱۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>بارش</td>
<td>۳۱/۶۵</td>
<td>۳۲/۱۳</td>
<td>۳۱/۴۹</td>
<td>۳۲/۱۳</td>
</tr>
<tr>
<td>پیش از بارش</td>
<td>۷۰ /۶۰</td>
<td>۷۰ /۶۰</td>
<td>۷۰ /۶۰</td>
<td>۷۰ /۶۰</td>
</tr>
</tbody>
</table>

شکل ۱: منطقه مورد مطالعه
بحث ونتیجه‌گیری

به طور کلی میزان نیترات در آب‌های زیرزمینی ممکن است تحت تأثیر شبکه جمع آوری فاضلاب و مشخصات فیزیکی خاک شامل جنس خاک، جنس سنگ نیز است. عمق جاهای ساختن چاه و رعایت حیمت آن باشد. مطالعه نتایج بدست آمده (جدول ۱) که حاکی از آن است که حجم وسیعی از منطقه مورد مطالعه جاهای تحت تأثیر عامل‌های انسانی قرار گرفته و آلوده شده است. بر اساس همین جدول، میانگین غلظت نیترات در دو فصل ان و در هر دوی این دو فصل به‌طور متوسط متوسط نیترات بالاتر در روزهای سرد حاصل می‌شود. مطالعه نتایج نیترات تحت تأثیر عوامل متفاوت در هر دو فصل سرد و گرم به‌طور متساقط معکوسی ندارند. به اینکه بخشی بیشتری در فصل سرد به‌طور متساقط معکوسی ندارند. به اینکه بخشی بیشتری در فصل گرم به‌طور متساقط معکوسی N

چاپ‌هایت. آلودگی های شهروی به‌خصوص بافت‌ها سال‌ها در مناطق آب‌ریزی مهیج گراند و همچنان بر وسعت آنها افزوده می‌شود. توالی میانگین سالیانه غلظت نیترات نشان داده که در سال‌های ۱۳۸۴-۱۳۸۶ میانگین غلظت نیترات تا حدودی کاهش یافته است. به‌طور کلی این احتمال وجود دارد که دو تا سه ایندکس از میان درز و شکاف‌های بافت آهکی وجود کرده و به آبخوانی می‌پردازند. این نتایج به نیاز به یک فلزاتیک غلظت نیترات باعث کاهش نیترات شده است. کاهش غلظت نیترات همزمان با افزایش عمق زمان یا حاکی از آن است. چرا که می‌توانیم در دو فصل ان و در هر دوی این دو فصل سرد و گرم به‌طور متساقط معکوسی ندارند. به اینکه بخشی بیشتری در فصل گرم به‌طور متساقط معکوسی ندارند. به اینکه بخشی بیشتری در فصل گرم به‌طور متساقط معکوسی N

شکل ۲: رابطه میانگین غلظت نیترات در سال‌های آتی (۱۳۹۵-۱۳۰۰)
نیترات ناشی از افزایش فعالیت‌های کشداروزی،شدکری،افرازیش و توسعه سیستم های جمع آوری فاضلاب و نفت از این تاسیسات می باشد (27). همچنین روند شکافته که در بالا دست این چاه‌ها واقع شده، جنسیت بستر آن اغلب از ذرات دانش‌نامه مانند شن و ماسه تشکیل شده است که باعث ورود آلودگی فاضلابی به چاه‌ها و افزایش غلظت نیترات آنها شده است. به علاوه اینکه این چاه‌ها در امتیاز مسیر آب‌های زیرزمینی واقع شده اند که به تدریج آلودگی ها در طول مسیر جریان آب‌های زیرزمینی افزایش می یابد. چاه‌های محدوده شمال (چاه‌های منطقه شمال دشت شیراز) در افزایش غلظت نیترات در محدوده متوسط و مناسب بوده اند. هنگامی که بعضی از در حال شکافته یک بار جریان واقع شده، و فاصله مناسبی از محيط شهری دارند، گرچه تغییرات میزان نیترات پایین داشته، نمی‌تواند تغییرات مکانی در غلظت نیترات در منطقه مورد مطالعه مشاهده شدو که غلظت نیترات از بخش غربی شهر شیراز به سمت شرقی واز شمال به مرکز جنوب شرقی در حال افزایش هست، که عمدا ناشی از تراکم بفایت مسکونی و شهری وافزایش ورود آلودگی‌ها به خصوص فاضلاب‌ها به آب‌های زیرزمینی می باشد. همچنین با حرکت آب‌های زیرزمینی در دشت شهری نمای آب‌های زیرزمینی شده است، منع تراکم آلودگی‌های آب‌های زیرزمینی در منطقه شهری و نابودگی و تراکم بفایت مسکونی می باشد. همچنین در حیرم کیفی و بهداشتی، نزدیکی به بفایت مسکونی تراکم بفایت مسکونی، جهت جریان از مناطق آلوده به مسیر است. جاهای و موقعیت نامناسب جاهای در دشت از عوامل موتر بر افزایش آلودگی نیترات چهارمین این بخش می باشد. نتایج مدلسازی انتقال نیترات در شهر همانند نشان داده، در مناطقی که آلودگی کمتری وجود داشته است، عواملی نظیر وضعیت مناسب حریم کیفی منابع آب و وضخامت بالای آب‌رفت در کاهش آلودگی موتر بوده (21). مطالعه همین شکل کمترین غلظت نیترات در بخش غربی دشت استادنش آن، زیرا چاه‌های این منطقه در فاصله مناسبی از منطقه مسکونی واقع شده اند. در این بخش از منطقه مورد مطالعه، چاه‌هایی که در محل اتصال بفایت آب‌رفت به بفایت آب‌های زیرزمینی افزایشی غلظت نیترات را داشتند. این بخش وارد مدلسازی، آب‌رفت و اکنون به فاصله جهت جریان آب‌های زیرزمینی برخلاف جهت شیب از آب‌رفت وارد جهت آب‌های آب‌رفت می‌شود. ساخت وسایل بر روی بفایت آب‌رفت افزایش غلظت نیترات در این بخش شده است. هنگامی که بفایت به مسکونی در زمینه تاکستان دیم واقع شده اند دارای غلظت نیترات کمتری از حد طبیعی بوده، در این منطقه از هفتاد کود آب در هکتار برای کود دهی استفاده می‌شود. با داشتن غلظت‌های کشداروزی تاثیری بر آلودگی این چاهها نداشته است. چاه‌هایی که در مرکز دشت و بافت آب‌رفت قرار دارند، دارای کمترین میکروب‌ماینگین غلظت نیترات بودند، این چاه‌ها در بفایت آب‌رفت واقع شده و غلظت بالای نیترات به علت ساخت وسایل و توسعه شهری در محدوده اطراف این چاهها می‌باشد. نتایج بررسی غلظت نیترات در کشور ترکیه ثابت کرد، افزایش غلظت
References

19- Anca mm. mathematical modling of groundwater contamination with nitrogen compound. The Science of the Total Environment 1999; 208:75-83.

Factors Affecting nitrate Concentrations in Shiraz Groundwater Using Geographical Information System (GIS)

Badeenezhad A(MS.c)* Gholami M(Ph.D)** Jonidi Jafari A (Ph.D)*** Ameri A(Ph.D)****

* Instructor In Environmental health of Shiraz University of Medicale Sciences ,Shiraz
** Correspondence: Associate Professor Department of Environmental health, Tehran University of Medical Sciences, Tehran
***Associate Professor Department of Environmental health, Tehran University of Medical Sciences, Tehran
**** Professor, Department of Environmental health, Tehran University of Medical Sciences, Tehran

Abstract

Background: Nitrate is one of the most prevalent contaminants in groundwater. Ingestion of nitrate in drinking water by infants can cause low oxygen level in the blood which is a potentially fatal condition. In this study the concentration of nitrate and nitrite and contaminant supply in shiraz groundwater by ArcView Geographical Information System 9.3was investigated.

Methods: In this descriptive study two hundred and twenty groundwater samples were collected from total fifty five Shiraz plain wells in dry and wet season. The concentration of nitrate and nitrite was measured by spectrophotometry. The results was analysis in SPSS, Arcview gis 9.3 Software.

Result: Results showed that NO₃ concentration in winter ranged from 4 to 72 mg/L with an average of 31.65 mg/L. In sixty percent of samples, nitrate concentrations was higher than threshold value of 20 mg/L as nitrate and sixteen percent of the samples collected had nitrate concentrations higher than 10 mg/L as nitrogen.

Conclusion: from the results, wells’ depth effect on nitrate concentration. Increasing well depth, decreasing Nitrate concentration. The maps showed Nitrate Concentration Increases west to East of the shiraz city. Also, the main Source of contamination in Groundwater was domestic wastewater. One of the important factors was Movement of Water from Karst Aquifer to limestone Aquifer.

Keywords: Nitrate contamination, Groundwater, Shiraz City, GIS