بررسی عوامل مؤثر بر غلظت نیترات منابع آب شرب زیرزمینی شیراز با استفاده از سیستم اطلاعات جغرافیایی (GIS)

نویسنده: احمد بدری نژاد، مریا علامی، احمد جنگی جعفری، احمد عابدی

چکیده

سابقه و هدف: نیترات یکی از شایع ترین آلوده‌کننده‌های آب‌های زیرزمینی است. در صورت مصرف آب آلوده به نیترات توسیع نزدیکی می‌گردد. به‌طور کلی، این موضوع باعث افزایش میزان نیترات و انرژی، علی‌رغم آن و به‌عنوان در مورد نیترات در Arcview GIS 9/3 منابع آب شرب زیرزمینی شیراز با استفاده از نرم افزار Arcview GIS 9/3 به‌صورت منظم از تجهیزات جهان برداشت‌شده. آزمایش نیترات و نیترات، با استفاده از اسپیکلیفومتری انجام شد. نتایج بدست آمده در نرم‌افزار SPSS و نرم‌افزار Arcview GIS نشان داده شد که نیترات در منابع آب شرب زیرزمینی شیراز بالاتر از میانگین 31/4 میلی‌گرم بر لیتر و میانگین 42/5 میلی‌گرم بر لیتر بوده است. نتایج نشان داد که نیترات بالاتر از حد استاندارد بدست آمده. نتیجه‌گیری: بر اساس نتایج با اقراز عمل چهار غلظت نیترات کاهش می‌یابد. نتایج نشان داد که غلظت نیترات از غرب به شرح شیراز به شرق در حال افزایش است و همچنین منبع آلودگی چاه‌های شهر شیراز قابلیده و خالی‌گیری می‌یابد. مصرف آب از آب‌خوان رسوبی به آب‌خوان آهکی از عوامل مهم آلودگی چاه‌های این منطقه می‌باشد.

ویژه های کلیدی: غلظت نیترات، آلودگی زیرزمینی، شهر شیراز، سیستم اطلاعات جغرافیایی (GIS)

اطلاعات جغرافیایی

طلوه بهداشت

فلسفه علمی یزورشی

دانشگاه بهداشت بزن
سالم بازده
شماره: دوم
تابع: 1391
شماره مسلسل: 35

تاریخ وصول: 1390/9/20
تاریخ پذیرش: 1390/12/12
مقدمه

افزایش جمعیت، گسترش شهرها و صنایع و بالا رفتن استانداردهای زندگی باعث آلوگندی محیط زیست مخصوصاً منابع تأمین کننده آب اشامیدنی شده است(1). فايند توسه در كشور ايران، مشکلات گسترده ای از جمله آلوگندی آب را بدينال داشته است، اين مسئله زمانی اهميت بيشتری پيدا مي كند كه كشورمان در منطقه خشک و نيمه خشک واقع شده است و آبتهي زيرزميي حدود 5% مصرف آب شرب را تشكيل مي كنند(2). اين سوال اخیر اهميت اين آبهاي بوز روز پيش شده است. بيشترین خطری که در اين آبها وجود دارد از منابع آب زيرزميي را تهديد مي كنند آلوگندی اين منابع توسط مواد ژان آوري است که انسان به طور عدم با غير عمداً و یا در نتیجه سهول انگاری و نا آگاه وارد محیط های طبيعي می سازد(3). فراوانی و شديد شاغل ترين آليهيد ای که منابع آب زيرزميي را تهديد می كند نیتیات می باشد، غلظت بالاي نیتیات باعث کاهش کیفیت آب زیرزمینی می شود(4). بون نیتیات با احیاء به نیتیت در بدن باعث ایجاد بیماری مهملوجگی نیز کودگان خواهد شد (5). گزارشات در كشور هند نشان داد که غلظت بالای نیتیات در طولانی مدت باعث سقط جانب همزمان در هشت زن شده (6) سرطان معدن، بیماری های قلی - عروقی، فشار خون و اثر بررسی های عصبی از ارک مصرف غلظت بالای نیتیات است (7). به همین جهت سازمان بهداشت جهاني به انتقال از این زمینه در آب اهرام گردنه است، به تعیین مسئوله استاندارد و تحقيقات صنعتي ايران اقدام به تعیین حدکث مجاز غلظت نیتیات در آب شرب به میزان ۵۰ ميلي گرم در لیتر خواهد شد(8). در یک تحقیق در کشور ترکیه، اقدام

كردن. تجزيه مواد آلي در خاک، شستنوي كودهاي شيميائي
ناتي از فعاليتی كشاورزي، فضولات انساني و جهاني
و فضولاتي خاکي و شهری تقييم نشده از منابع اصلي نیتیات
در آبتهي زیرزميي می باشد(12). توانايي منحصربه فرد ميست
اطلاعات جغرافىي (GIS) در تركب كردن منابع اطلاعاتي
گوناگون و سيار متفاوت، تجزيه و تحليل روند زمانی وقائع و
زرشيابي اطلاعات مكاني از جمله دلایلي بود که سامانه
گوناگون و سيار متفاوت، تجزيه و تحليل روند زمانی وقائع و
زرشيابي اطلاعات مكاني از جمله دلایلي بود که سامانه

Downloaded from bjssu.ssu.ac.ir at 1:56 IRDT on Sunday August 30th 2020
روش بررسی GIS به نهایی نشانی کنیه‌ای زیرزمینی شهر قونه در محیط

شدو نتایج نشان داد که آهی‌های زیرزمینی بخش جنوب غربی شهر قونه دارای بالاترین کیفیت هستند. نتایج مطالعه و مدل‌سازی احتمالی در آبخوان شهر ری نسبت به پیشینه جمع

آوری فاصله‌بندی کامی باشگاه قناته خوادش (18). موثری به‌طور برای جلوگیری از آلودگی نیترات تغییر معنی وکاهش در میدان باشگاه که باعث بهبود کیفیت آهی‌های زیرزمینی و شاید کامی باشگاه تجربه نیترات به این این افزایش شده (19). جاها آب آب شیراز پیش این اکنون در فاصلهٔ شهری واقع شده‌اند و نیاز عدم تباهی و احداث کمال شکه جمع

آوری فاصله‌بندی در شهر شیراز، همچنین فعالیتهای گسترشی کشاورزی و استفاده از کودهای شیمیایی و حیوانی انظار محدود گلولت ترکیبات نترپوزون در مطلع دی از زمین روند رو به افزایش داشته باشد، این ضریب به همراه اهمیت ترکیبات نیترات و نترپوزون در درآمادنی و تأثر حاد و سوء آنها بر

سلامتی، ما را بر آن داشته تا مطالعه گلولت نترات و معنی ومنشا آن در دست شیراز با مورد بررسی قرار دهیم، بنابراین در این مطالعه عوامل محیطی ناشی از تغییرات شری و تراکم

جمعتی و تأثیر احتمالی بافت شهری بر این جاها مورد بررسی قرار گرفت تا از این طریق منشا آلودگی به نحو موثرتری

شناسایی گردد. در این تحقیق ارتباط گلولت نیترات مانع زیرزمینی با عمق جاها، تغییر‌های محاسبه‌گر دیجیتال سیس به

کمک ضریب و نیز روند تغییرات شب منحنی بدست آمد، گلولت نیترات جاها در سالهای آینده با استفاده از روش حداقل

آرک‌ویو GIS 9.2 مورد ارزیابی قرار گرفت.
شیمیایی به صورت جدول به نفروش های فوق الحاق شده. برای
تغییرات مکانی و تغییرات نیترات، نفروش به‌هنجاره شده. نیترات
دو زمان خشک و ۶ درشت شیراز گریمند. وهمچنین مقدار هر زیر مجموعه با
این مقدار تغییرات از عملیات آماری نمایش داده شده. وابستگی به نمونه
برداری نسبت به فصول کم بارش و بارش مولفه از ارزیابی قرار
گرفته تا ارتباط صورت انتقال نیترات و فصول کم بارش و بارش
بسته آدی در این زمان میانگین و انحراف معیار دو فصل
محاسبه و نرم مقداره قرار گرفته. برای تغییر ارتباط در عمق
ونت و فسیرالنیترات، از نرمود پرکش با حدود اطمینان
95/5/استفاده شده. از ترسیم نفروش مرسرسیا گروه شرکت و تجزیه
تحلیل داده های مشاهده پرکش درون باید برای تغییر عوامل
مولفه نیترات یک نبود. دشت شیراز استفاده شده. برای
این کار ابتدا داده مکانی مربوط به منطقه مورد مطالعه شامل
نفروش کاربری اراضی، نفروش زمین شباه، نفروش تی‌وی‌گرافی دشت
شیراز و نفروش شیب جمع آوری فضایی و اثرات توده شیراز به مقیاس
1/5000 نه‌ده شده. نفروش کاربری اراضی به عنوان نفروش پایه به کار
گرفته شده. ویراب شیب مخصوص به وظیفه وعیوب
مختلف در محیط GIS
تعیین زمین Mرجع شده.
سپس نفروش های دیگر با استفاده از نفروش کاربری اراضی
مختصات داشته‌اند. در مراحل بعد به‌نحویها در محیط سیستم
اطلاعات جغرافیایی به صورت نفروش نفسه ای، خطی
وسطحی (بله گون) رسم شده. با بندست آدام مختصات
55 ه dime مزار مطالعه، چاپ در نفروش رسمی محسوم
اطلاعات جغرافیایی موقوف. باید شدند. شیب‌های شامل
عمق شکاف، سطح ایستایی به همراه داده های انداده گیری شده

یافته‌ها

حداقل و حداقل غلظت نیترات چاه‌های بافت مرکزی و جنوب
شرقی شهر شیراز به ترتیب، ۱۳ و ۷0 میلی‌گرم در لیتر به‌دست
آمده است. غلظت نیترات در چاه‌های بخش غربی دشت شیراز به ترتیب با حداقل
و حداکثر ۵ تا ۶.۷ میلی‌گرم در لیتر در تایباد، این متراژ برای
چاه‌های شمال منطقه مورد مطالعه ۹۰ میلی‌گرم در لیتر به‌دست
بر اساس میانگین غلظت نیترات در هدها رود افزايشی داشته است
و اندازه میزان میزان در بالا روند افزایشی ادامه داشته است.

مدل ریاضی تغییرات میانگین سالانه نیترات چاه‌های دشت شیراز
بر اساس روش حداکثر مجموع مربعات رابطه خطي (معادله
رگرسیون) شماره ۱ را نشان می‌دهد. بر اساس این رابطه، میانگین
ساله مراتب شکافی نیترات در صورت حفظ شرایط در
سال‌های آتی مطلق شکل ۱ داده‌ایم.
در شکل نشان داده شده است، میانگین سالانه نیترات در صورت حفظ شرایط موجود در ۵ سال آینده به بیش از ۳۷ میلی گرم بر لیتر خواهد رسید. بنابراین، ۳ ترکیب بهبودی بنی‌دست غلظت نیترات جاهایی را با نهایت اتکای بندی شکه جمع آوری زمین‌پرورشی شرکت نمی‌کند. این طور که مشخص است افزایش نقاط کافی شکه جمع آوری فاضلاب دارای غلظت بالای نیترات می‌باشد. کمترین و بیشترین غلظت نیترات به ترتیب مربوط به بخش غربی و بخش جنوب شرقی دشت شیراز می‌باشد.

بر اساس معادله ۱ به ازای یک واحد افزایش x ویک تغییر سال به سال بالاتر و یک واحد میزان نیترات افزوده می‌شود. نتایج نشان داد با افزایش عمق چاه، غلظت نیترات کاهش یافته است (معادله ۱) \(y = 21.6 + 0.82x \).

نتایج حاصل از نمونه‌برداری در جدول ۱ نشان دهنده آن است که غلظت نیترات در ۶۰% نمونه‌ها بالاتر از حد طبیعی و ۱۶% نیز بالاتر از میزان رهمودی ۵۰ میلی گرم بر لیتر سازمان بهداشت جهانی وحد استاندارد کشوری بود.

شکل ۱ نشان دهنده بیش بینی میانگین غلظت نیترات در سالهای آتی (۱۳۸۵-۱۳۹۵) با استفاده از معادله ۱ است. هم‌نژوری که

![شکل ۱: منطقه مورد مطالعه](image)

جدول ۱: آمار توزیعی میزان نیترات در جاهایی مورد بررسی بر حسب فصل بر پایه وکم بارش

<table>
<thead>
<tr>
<th>فصل بر بارش</th>
<th>میزان نیترات</th>
<th>انحراف معیار میانگین</th>
<th>حداکثر</th>
<th>۲۰ میلی‌گرم/لیتر</th>
<th>۱۶ میلی‌گرم/لیتر</th>
<th>۱۴ میلی‌گرم/لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>فصل بارش</td>
<td>۴۳</td>
<td>۳۱.۶</td>
<td>۰.۵</td>
<td>۵</td>
<td>۷۰</td>
<td>۲۲</td>
</tr>
<tr>
<td>فصل کم بارش</td>
<td>۴۴</td>
<td>۳۱.۶</td>
<td>۰.۵</td>
<td>۵</td>
<td>۷۰</td>
<td>۲۲</td>
</tr>
</tbody>
</table>
بحث ونتیجه گیری

به طور کلی میزان نیترات در آب آوری زیرزمینی ممکن است تحت تأثیر شبکه جمع‌آوری فاضلاب و مشخصات فیزیکی
خاک شامل جنس خاک، جنس سنگ نشتی، عمق چاه، ساختار چاه و رعایت حیات آن باشد. میزان تأثیر به‌دست
آمده (جدول ۱) که حاکی از آن است که حجم وسیعی از منطقه
موردنظره واجدها تحت تأثیر فعالیت‌های انسانی قرار گرفته و
آلوده شده‌اند. بر اساس حین جدول، میانگین غلظت نیترات
در دو فصل نر و کم پارش تفاوت محسوسی ندارد، با توجه به
اینکه سطح بیرونی دشت را بافت شهری عوامل نفوذ ناپذیر
تشکیل می‌دهد، در ترتیب بارندگی تأثیر چندانی در تغییر دشت به صورت مستقیم و رقیق شدن غلظت نیترات و تغییرات فصلی
آن نداشته است. بررسی هایی که در سال ۲۰۰۸ در کشور
اردن روی غلظت نیترات چاه‌های به فصل کم پارش و پارش‌بند
انجام شد، نشان دهنده کاهش غلظت نیترات در فصول مطبوع
بوده این ناشی از تغییر دشت و تغییرات بارندگی و رقیق‌شدن
غلظت نیترات بوده است (۱۶). میزان افزایش سالانه غلظت
میانگین نیترات ناشی از تأثیر زیاد آلودگی هادر محدوده

شکل ۲: پیش‌بینی میانگین غلظت نیترات در سال‌های آینده (۱۳۹۵-۱۳۹۹)

جاهایی. آلودگی‌های شهروی به‌خصوص فاضلاب‌های سالمند در
مناطق آب‌ریز مانند‌گارنده و همچنین بر وسط آن‌ها افزوده می‌شود.
نتایج میانگین سالمند غلظت نیترات نشان داد، که در سال
۱۳۸۴ میانگین غلظت نیترات تقریبی ۳۵.۵ است، که
دلیل آن این‌ست که جمع آوری فاضلاب در محدوده‌ای
است که جاهای آمیک به‌طور واقع شده باشد، با توجه به اینکه فاضلاب
ها در کوتاهترین زمان از‌منابع دراز و شکاف‌های میان آمیک
عبر کرده و به آبخوان می‌پردازد، ایجاد شکاف فاضلاب سرعه
پیش‌بینی نیترات شده است. کاهش غلظت نیترات همزمان
با افزایش عمق چاه، حاکی از آن است، که هنگام تغییرات
عمدتاً بر روی‌های مرطوب و خشک‌سالی واقع شده و باعث
انتقال محدود بر آلودگی به‌لایه کم عمق گرفته گردید.
این وضعیت در آب‌آریز زیرزمینی سرسر دنیا از جمله ترکیه، چین و
کره جنوبی مشاهده شده است (۱۵). با وجود این، غلظت نیترات
در مناطق مرکزی و جنوب‌شرقی دشت شیراز و محدوداً به دلیل عدم
وجود شبکه جمع‌آوری فاضلاب در این مناطق است، نتایج یک
مطالعه نشان داد، شبکه جمع‌آوری فاضلاب می‌تواند، غلظت
نیترات را حدود ۳۰ میلی‌گرم بر لیتر کاهش دهد (۱۸). عدم رعایت
نیترات ناشی از افزایش فعالیت‌های کشاورزی، رشد فعالیت‌های
صُنعی، افزایش و توسیع سیستم‌های جمع آوری فاضلاب و
نتیج از این تاسیسات می‌باشد (۲۲). همچنین روش‌ها در شک
که در بالا ذکر دست این چاه واقع شده، جنس بست ۸۰ اغلب از
ذرات دانه درشت مانند شن و ماسه تهیه شده است که باعث
ورود آلودگی فاضلابی به چاه و افزایش غلظت نیترات آنها
شد است. به علاوه اینکه چاهی در امتیاز مسیر آب‌های
زیرزمینی واقع شده اند که به تدریج آلودگی ها در طول مسیر
جراح آب های زیرزمینی افزایش می‌یابد. چاه‌های محدوده
شمال چاه‌های منطقه شمال شمال شیراز دارای غلظت نیترات
در محدوده متوسط و مناسب بوده‌اند. حلولچه جهاب این بخش که
درخاشیه بلوار جمیران واقع شده و فاصله مناسبی از محيط
شهر دارند روئیدن تغییرات میزان نیترات بایستی داشتهند. تغییرات
مکانی در غلظت نیترات در منطقه مورد مطالعه مشاهده شد که
به علت پرکاشندگی منابع آلودگی و میزان تاثیر متقاوت آنها بر
منابع زیرزمینی است.

غلظت نیترات از بخش غربی شهر نیترات به سمت شرقی واز
شمال به مرکز و جنوب شرقی در حال افزایش هست، که عمدا
ناشی از تراکم وقت مسکونی و شهری و فاضلاب ورود آلودگی‌ها
بخصوص فاضلابی به آبهای زیرزمینی می‌باشد. همچنین با
حرکت آبهای زیرزمینی در شمال شیراز منابع آلاینده افزایش
پیدا کرده و باعث افزایش غلظت نیترات در طول مسیر حرکت
آبهای زیرزمینی شده است، منهاص قلی آلودگی‌های آب‌های
زیرزمینی در مناطق شهری شهر نیترات فاضلابی‌های شهری و
خالقی و تراکم وقت مسکونی می‌باشد. عدم رعایت حریم
کیفی و بهداشتی، نزدیکی به وقت مسکونی، جهت جراح از
حرفه کیفی و بهداشتی، نزدیکی به وقت مسکونی، تراکم وقت
مسکونی، جهت جراح از مناطق آلوده به تراکم این
چاه‌ها و جمع‌آوری نامناسب جراح در دشت از عوامل موثر بر
افزایش آلودگی نیترات چاه‌های این بخش می‌باشد. نتایج
مدل‌سازی تقلید نیترات در شهر همدان نشان داد، در مناطقی که
آلودگی کمتری وجود داشته است، عواملی نظیر وضعیت
مناسب حریم کیفی منابع آب و وضعیت بالای آب‌فر در کاهش
آلودگی موثر بودند (۲۲). مطالعه ۲۲ همین شکل کمترین غلظت
نیترات در بخش غربی دشت دست آمد، زیرا چاه‌های این
منطقه در فاصله مناسبی از مناطق مسکونی واقع شده‌اند. در این
بخش از منطقه مورد مطالعه، چاه‌هایی که در محل اتصال بافت
آب‌فر از وقت منابع آب‌های زیرزمینی واقع شده اند
پارهای غلظت نیترات را داشتهاند، این به علت برداشت آب بخش
از بیلار (ارز) آب بوده و به نتیجه جهت جراح آب‌های زیرزمینی
برخلاف جهت شیب از آب‌فر وارد چاه‌های آب‌های می‌شود. ساخت وساز بر روی وقت افزایش غلظت نیترات
در این بخش شده است. دو حلقه جهاب که بیرون از وقت مسکونی
در مزرعه تاکستان دیم واقع شده اند دارای غلظت نیترات کمتر
از حد طبیعی بودند، در این منطقه از ۵ تا ۱۰دان آلی در
هکنار برای کود دهی استفاده می‌شود. بازاران فعالیت‌های
کشاورزی تا برابری بر آلودگی این چاه‌ها نشانگ در است. چاه‌هایی
که در مرکز دشت و باعث آب‌فر قرار دارند، دارای کمترین
عمق و میزان نیترات غلظت نیترات بودند، این چاه‌ها برای وقت
آب‌فر واقع شده‌اند و غلظت بالای نیترات به علت ساخت وساز
و توسعه شهری در محدوده اطراف این چاه‌ها می‌باشد. نتایج
بررسی غلظت نیترات در کشور تکیه ثابت کرد، افزایش غلظت
References

Factors Affecting nitrate Concentrations in Shiraz Groundwater Using Geographical Information System (GIS)

Badeenezhad A(MS.c)* Gholami M(Ph.D)** Jonidi Jafari A (Ph.D)*** Ameri A(Ph.D)****

* Instructor In Environmental health of Shiraz University of Medicale Sciences ,Shiraz
** Correspondence: Associate Professor Department of Environmental health, Tehran University of Medical Sciences, Tehran
***Associate Professor Department of Environmental health, Tehran University of Medical Sciences, Tehran
**** Professor, Department of Environmental health, Tehran University of Medical Sciences, Tehran

Abstract

Background: Nitrate is one of the most prevalent contaminants in groundwater. Ingestion of nitrate in drinking water by infants can cause low oxygen level in the blood which is a potentially fatal condition. In this study the concentration of nitrate and nitrite and contaminant supply in shiraz groundwater by ArcView Geographical Information System 9.3 was investigated.

Methods: In this descriptive study two hundred and twenty groundwater samples were collected from total fifty five Shiraz plain wells in dry and wet season. The concentration of nitrate and nitrite was measured by spectrophotometry. The results was analysis in SPSS, Arcview gis 9.3 Software.

Result: Results showed that NO$_3^-$ concentration in winter ranged from 4 to 72 mg/L with an average of 31.65 mg/L. In sixty percent of samples, nitrate concentrations was higher than threshold value of 20 mg/L as nitrate and sixteen percent of the samples collected had nitrate concentrations higher than 10 mg/L as nitrogen.

Conclusion: from the results, wells’ depth effect on nitrate concentration. Increasing well depth, decreasing Nitrate concentration. The maps showed Nitrate Concentration Increases west to East of the shiraz city. Also, the main Source of contamination in Groundwater was domestic wastewater. One of the important factors was Movement of Water from Karst Aquifer to limestone Aquifer.

Keywords: Nitrate contamination, Groundwater, Shiraz City, GIS