The use of TiO$_2$/UV-C has been extensively studied for its antibacterial and decontamination effects. The mechanism of action involves the generation of reactive oxygen species (ROS) upon exposure to UV-C radiation. These ROS can damage bacterial DNA and proteins, leading to cell death. The pH of the environment also plays a crucial role in the effectiveness of TiO$_2$/UV-C treatment. A pH of 7 is optimal for maximum efficacy, as it enhances the formation of ROS.

E-mail: qanizadeh@gmail.com
مقدمه
کاربرد فرآیند فتوکانالیستیک TiO۲/UV-C در حذف رنگ راکتوی فرمز ۱۹۸ از فاضلاب...
آزمایش‌ها در یک راکتور نابوسته با حجم میلی‌لیتر 1700 از چندین پلاکی‌گلس که محتوی لامپ UV، مکان اختلاف و مکان نخک ساخته شده بود انجام گرفت (شکل 1). منبع تأمین بروز ماورا بیش از 15 وات) با پوشش UV-C (کوارتز (فقط 30 و طول 490 میکروفام در اکسید تیتانیوم از محلول رنگی با استفاده از یمب خلا (J/B (Aurora, IL 60507، قیف بخار و فیلتر استاتو سولوز با منادی 2/0 میکرون انجام شد.

جهت تعیین شرایط بهینه عملکرد فراکتالیستی در آزمایش تیتانیوم در حذف رنگ، آزمایشات در سه سطح غلظت دی اکسید تیتانیوم (L1: 12.46/1000، L2: غلظت مختلط رنگ راکتور قرمز 198 مگ/ل (1000)، شش سطح زمان واکنش منتقل (R3: 2/5، R4: 5/0) و سه سطح pH (7/5، 7/10) انجام گرفت. کل مراحل آزمایش در دمای آزمایشگاه C (25/0 /5) و جهت کنترل دمای محوطه‌ها راکتور در این محدوده از مکان نخک ساخته شده استفاده گردید.

جدول 1: مشخصات رنگ راکتور قرمز 198

<table>
<thead>
<tr>
<th>ساختار شیمیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نوع رنگ</th>
<th>شناسه اختصاصی</th>
<th>وزن مولکولی (g/mol)</th>
<th>طول موج حداقل جذب (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رنگ آنزیمی</td>
<td>198</td>
<td>938</td>
<td>518</td>
</tr>
</tbody>
</table>
شکل 1: طرح ساده راکتور مورد استفاده در مطالعه
با توجه به طول موج حد اکثر جذب رنگ مورد نظر ($\lambda_{\text{max}}=518$ nm)، غلظت رنگ نمونه های مختلف با استفاده از اسپکترومتر و مختص استاندارد تهیه شده با محلولهای استاندارد در طول موج فوق (رسم بهترین خط برآش و تبعین معادله خط) تعیین شد (10). کلیه آزمایشات بصورت 2 بار تکرار انجام و داده ها بر اساس میانگین آنها گزارش شد.

یافته ها
تغییرات طیف جذب مشاهده شده در طی تجزیه رنگ در راکتور فتوکاتالیستی TiO$_2$/UV-C ملکولی رنگ در طی فرآیندهای فتوکاتالیستی طیف جذب این ترکیبات نیز تغییر می کند. شکل 2 تغییرات طیف جذب رنگ راکتور فرمز 18 و کاهش یکپارچه جذب در زمانهای مختلف پرتو در رنگ نمونه می دهد. همانطوری که در شکل 2 نشان می دهد، مقدار ها گرفته شده در شکل تغییرات طیف جذب رنگ با غلظت اولیه 1 mg/l
فرمز 198 دارای طولایی که شیب خط سرعت واکنش در شرایط مختلف تأثیر بیشتر فرآیند $	ext{TiO}_2/\text{UV-C}$ را تأیید می‌کند.

نیبت‌های فرآیند $	ext{UV-C}$ نتیجه‌ی تأثیر بیشتری در حذف رنگ راکتیوی

شکل 3: تغییرات ویژگی‌های جذب در طول تجزیه فتوکاتالیستی رنگ راکتیوی قرمز 198

$C_0=100 \text{ mg/L}, \text{TiO}_2=0.5\text{ g/L}, \text{pH}=4$

شکل 3: تأثیر pH بر میزان حذف رنگ راکتیوی قرمز 198 در فرآیند فتوکاتالیستی

(عکس اولیه رنگ: 100 میلی گرم در لیتر)
نتایج آنالیز مطالعه نشان دهنده تأثیر یشتر فرآیند TiO$_2$/UV-C بر میزان حذف رنگ راکتیو قرمز 885در فراورد (C$_0$=100 mg/L, TiO$_2$=1/4 g/L) می‌باشد. مقدار تأثیر مزان حذف رنگ (y) بر مقدار pH و مقدار pH بر میزان حذف رنگ (x) توسط معادله (3) می‌باشد:

$y = -0.0381x + 0.1681$
$y = -0.0268x + 0.1589$
$y = -0.0213x + 0.0937$
$R^2 = 0.9956$
$R^2 = 0.9957$
$R^2 = 0.9956$

همانطور که در جدول 3 مشاهده می‌گردد میزان تأثیر سرعت واکنش حذف رنگ در فرآیند TiO$_2$/UV-C به سمت pH می‌باشد. در بررسی میزان ردیابی یک هم افزایی است که میزان آن به محدوده pH کلیایی نسبت به pH خشک و اسیدی، بیشتر می‌باشد.

تأثیر میزان ذرات انرژی اکسید تیتانیوم در حذف رنگ مقدار فتوکاتالیست یکی از پارامترهای مهم و اساسی در تجارب رنگ از نظر منظور جلوگیری از مصرف کاتالیست اضافی، پیشین مقدار بهره کاتالیست برای
جدول 3: تأثیر مقدار TiO\textsubscript{2} بر میزان حذف رنگ TiO\textsubscript{2}/UV-C در فرابند (C\textsubscript{0}=150 mg/L, pH=3)

<table>
<thead>
<tr>
<th>هم افزایی</th>
<th>K\textsubscript{UVC}</th>
<th>K\textsubscript{TiO\textsubscript{2}/UV-C}</th>
<th>pH</th>
<th>سری</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO\textsubscript{2}=0.4 g/L</td>
<td>0.95</td>
<td>0.033</td>
<td>0.019</td>
<td>1</td>
</tr>
<tr>
<td>TiO\textsubscript{2}=0.6 g/L</td>
<td>0.957</td>
<td>0.21</td>
<td>0.024</td>
<td>2</td>
</tr>
<tr>
<td>TiO\textsubscript{2}=1 g/L</td>
<td>0.98</td>
<td>0.054</td>
<td>0.004</td>
<td>3</td>
</tr>
</tbody>
</table>

#
شکل 5: تأثیر مقدار TiO\textsubscript{2} بر میزان حذف رنگ TiO\textsubscript{2}/UV-C در فرابند (C\textsubscript{0}=150 mg/L, pH=3)

جدول 4: تأثیر سرعت واکنش برای غلظت‌های مختلف رنگ و دی اکسیدتانیوم در 3 (mg/L)

<table>
<thead>
<tr>
<th>غلظت رنگ</th>
<th>جرم</th>
<th>تاثیب سرعت واکنش (بر دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.038</td>
<td>0.040</td>
<td>0.038</td>
</tr>
<tr>
<td>0.048</td>
<td>0.050</td>
<td>0.048</td>
</tr>
<tr>
<td>0.065</td>
<td>0.060</td>
<td>0.065</td>
</tr>
<tr>
<td>0.078</td>
<td>0.080</td>
<td>0.078</td>
</tr>
<tr>
<td>0.121</td>
<td>0.120</td>
<td>0.121</td>
</tr>
<tr>
<td>0.239</td>
<td>0.240</td>
<td>0.239</td>
</tr>
<tr>
<td>0.324</td>
<td>0.320</td>
<td>0.324</td>
</tr>
<tr>
<td>0.436</td>
<td>0.430</td>
<td>0.436</td>
</tr>
<tr>
<td>0.650</td>
<td>0.640</td>
<td>0.650</td>
</tr>
</tbody>
</table>

بیشترین قدرت حذف رنگ (98%) در زمان 90 دقیقه رادیم حذف رنگ از 98.7 درصد و در فرابند فتوکاتالیستی (TiO\textsubscript{2}/UV-C) با زمان مشابه، میزان (یو)

\[y = -0.0397x + 0.2474 \]
\[R^2 = 0.9809 \]

\[y = -0.0314x + 0.2223 \]
\[R^2 = 0.9768 \]

\[y = -0.0287x + 0.3197 \]
\[R^2 = 0.9685 \]
بحث و نتیجه گیری

نتایج تغییر پیک جذب نشان دهنده سرعت حذف نسبتاً سریع این رنگ در طی فرآیند فتوکانالیزیست است. علل این سرعت حذف می‌تواند به ساختار رنگ و پیوندهای شیمیایی موجود در ساختار آن مرتبط باشد و این نشان می‌دهد که اثری پیوندهای

موجود در رنگ دارای استحکام نسبتاً کمی بوده و شرایط اکسیداسیون اینجا شده توسط انرژی فتوکه فنو های ساطع شده از پروتو ماده بنفش بر سطح دی اکسید چنین پتاسیل مناسبی برای شکست این پیوندها و تجزیه رنگ مورد نظر را دارد.
نتایج مطالعه نشان داد که تغییرات pH محیط تأثیر قابل توجهی در میزان حذف رنگ دارد. علل این تأثیر در تجزیه مورد نظر pH محیط بر خصوصیات سطحی نانو ذره دی اکسید تیتانیوم و شرایط بیولوژیسیون آنلاین مورد نظر مرتبط باشد. مطالعات نشان می‌دهد که تغییرات pH محیط می‌تواند بر اساس معادلات زیر خصوصیات سطحی یا بار الکتریکی موجود در سطح دی اکسید تیتانیوم را تحت تأثیر قرار دهد.

\[\text{TiOH} + \text{H}^+ \rightarrow \text{TiOH}^+ \]

(1)\]

\[\text{TiOH} + \text{OH}^- \rightarrow \text{TiO}^2- \]

(2)

همانطوریکه در شکل 2 نشان داده شد، افزایش pH در محدوده 4 تا 10 منجر به کاهش میزان حذف رنگ می‌گردد. علل این پدیده می‌تواند به تأخیر ایمنی عامل در تغییر بار الکتریکی غلبه در سطح دی اکسید تیتانیوم مرتبط باشد. از آنجایی که میزان حذف آنلاین در شرایط استیمی بیشتر از سایر هرچند میزان حذف آلاینده در شرایط استیمی بیشتر از سایر است اما اثر هم افزایی آن لطفی‌تری دکتر می‌شود.

بر اساس نتایج pH شرایط کمتر است. علل کم بودن میزان هم افزایی در pH شرایط کمتر است. علل کم بودن میزان هم افزایی در اسیدی نسبت با سایر شرایط (قابلیت خشی) را می‌توان توجه کرد که در این شرایط فردی UV-C موجب نیز تأثیر قابل توجهی در حذف رنگ داشته که می‌تواند به سببِ pH تأثیر گذارشته و باعث حذف آن شود (19). در ضرایب در pH بالاتر بار الکتریکی غلبه در سطح دی اکسید تیتانیوم می‌شود که این امر باعث پیدایش نیروی دافع الکتروکوولوئی میان رنگ راکیوی قرمز 198 و بارهای الکتریکی هم نام موجود در سطح
کاربرد فرآیند فتوکاتالیستی TiO$_2$/UV-C در حذف رنگ راکتوی همیا 198 از فاضلاب...

سینتیک مطالعاتی دارد. این محققین در سال 2007 حذف رنگ راکتوی همیا 198 با استفاده از فرآیند سوتوکاتالیستی در حضور TiO$_2$ بررسی و گزارش کرده‌اند که حذف آن را به دلیل نظر تأثیرگذار در سیستم دو اوستارونیکس پایین بوده و تغییر مقدار نسبت تأثیرگذار در راندمان سیستم فوق ندارد. اما در شرایطی که از نورمنی و اوستارونیکس استفاده گردید راندمان حذف رنگ تحت تأثیر جرم دی اکسید تینیاپور گرفت به طوری که با افزایش میزان TiO$_2$ تا حد 300 mg/L راندمان حذف افزایش یافته و در مقادیر بالاتر باعث کاهش راندمان حذف شده است. علل این پدیده به افزایش کدروت محلول، کاهش میزان نفوذ پروتو UV و سبب می‌شود که حذف پروتو

بنابراین نتایج کلی این مطالعه نشان می‌دهد که فرآیند اکسیداسیون (UV-C) به دلیل ایجاد هم از اکسید در حجم کاتالیزور دلتا PhD/UV-C به دلیل ایجاد هم از اکسید در حجم کاتالیزور دلتا PhD/UV-C
References

Application of TiO$_2$/UV-C Photocatalytical Processes for the Removal of Reactive Red 198 Dye from Synthetic Textile Wastewater

Ehrampoush MH*(Ph.D) Ghaneian MT**(Ph.D) Ghanizadeh Gh***(Ph.D) Rahimi S ****(MS.c)

*Professor, Department of Environmental Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
**Assistant Professor Department of Environmental Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
***Corresponding Author: Assistant Professor Department Environmental Health, Baqiyatallah (a.s) University of Medical Sciences, Thran, Iran.
****MS.c Student of Environmental Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Background: Dyes have complicated structure, are usually toxic and resistant to biological treatment which enter into environment by industrial waste streams. The aim of this study was the removal of reactive red 198 dye (RR 198) by photolysis (UV) and photocatalytical (TiO$_2$/UVC) processes. This study was conducted to investigate the effects of dye concentration, pH, TiO$_2$ dose, and contact time.

Methods: The study was carried out by drawing on batch reactor. Synthetic wastewater was prepared by solving of RR198 in tap water. Dye concentration was determined with spectrophotometer on 518 nm.

Results: The results of this study show that TiO$_2$/UV process is more effective than UV-C process alone. The results of the study also show that constant rate of photochemical degradation in acidic pH and during photocatalytical degradation process was 0.0019 and 0.0381 min$^{-1}$, respectively. Photolysis and photocatalytical degradation of considered dye follow the first order kinetic model. Increasing of TiO$_2$ dose from 0.4 to 10 gr led to increasing of dye removal efficiency from 97.8 to 100%. Increasing of dye concentration from 100 to 250 mg/l and pH from 4 to 10 led to decreasing of dye degradation efficiency from 100 to 97.66 and from 100 to 94.6, respectively. The best efficiency was at pH=4.

Conclusion: Removal of RR 198 with photolysis and photocatalytical processes has the best efficiency in acidic condition (pH=4) among which the TiO$_2$/UVC process is better than the UVC.

Keywords: Photocatalytical degradation, UV ray, TiO$_2$, Reactive Red 198 dye.