بررسی میزان غلظت بزن در داخل کالی‌های تاکسی های شهر یزد با استفاده از روش SPME

نویستگان: ایوان عفروردی، ساتاز اسماعیلیان، مهدی حسنی‌مصدق

نسمه طهماسبی

اصغر زارع

دشانگر گروه بهداشت حررف ای، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد

نویسندگان مسئول: دانشجوی کارشناس ارشد بهداشت حررف ای، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی

شیمه صدوقی یزد - Email: sesmaeelyan@yahoo.com

دشانگر گروه فارماکولوژی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد

کارشناس ارشد بهداشت حررف ای، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد

چکیده

سیاست و هدف: بزن، به عنوان یکی از ترکیبات آلی قرار و سرطانزا است، می‌تواند از انتخابات سلامتی تاکسی‌های موجود در کالی‌های خودرو آزادگرده. هدف از انجام مطالعه تعیین میزان غلظت بزن موجود در کالی‌های تاکسی های شهر یزد می‌باشد.

روش بررسی: مطالعه حاصل از نوع توصیفی بوده و در فصل یکبار انجام شده است. که به شیوه طبقه‌ای- تصادفی تعداد 30 کالی‌های انتخاب از هر یک داخل کالی‌های توسط سبیل نمونه برداری خود را کنست و نمونه‌گیری گردید و نمونه‌ها با روش میکروایکستراژی از فاز جاده‌ای استخراج و با استفاده از تغییرات گاز کربن دی‌اکسید به‌کارگیری دادن گاز نشان دهنده ای نجیب و تعیین مقدار کربن‌دهی

یافته‌ها: با توجه به نتایج، میزان غلظت بزن در کلیه تاکسی‌های شهر یزد در وضعیت توقف بیشتر از وضعیت حرکت بوده است. که میزان این در وضعیت توقف 0.05 و در وضعیت حرکت 0.09 میکروگرم مولکول بوده است. اختلاف میانگین‌ها بین این دو وضعیت T = 200 μg/m³ و 122 و در وضعیت حرکت به نریب 100 μg/m³ یکی در داده‌های توقف T = 0.84 μg/m³ و 178 و در وضعیت حرکت T = 0.54 μg/m³ و 218 می‌باشد. با توجه به تفاوت نمایانده میانگین غلظت بزن در تاکسی‌های شهر یزد در وضعیت حرکت با این وضعیت توقف، هایی با عمر کمتر از 6 ماه (P = 0.0001) در وضعیت توقف و حرکت از لحاظ آماری معنی‌دار نمی‌باشند (P = 0.0001)

نتایج گیری: نتایج این مطالعه نشان می‌دهد که غلظت بزن در داخل کالی‌های تاکسی‌های شهر یزد بین زیر 0.001 μg/m³ و 0.001 μg/m³ است. با توجه به این که در فصل تابستان دچرا حرارت در اثر نقاط کم‌سقف بازتربیت‌ها می‌باشد و با توجه به این که در اثر نقاط کم‌سقف بسته مصرف پیش‌نیازه، با تعداد آن ها کم می‌باشد لذا خودروها عملاً در فضای بخار و زیر آغتش بارک می‌شوند و احتباس متصاعد شدن ترکیبات قرار و به ویژه بزن افزایش می‌یابد.

واژه‌های کلیدی: بزن، میکروایکستراژی، فاز جاده، تاکسی، آلودگی هوا، ارزیابی نامش

این مطالعه برگرفته از پایان‌نامه دوره کارشناسی ارشد بهداشت حررف ای، دانشگاه علوم پزشکی شهید صدوقی یزد می‌باشد.
بررسی میزان غلظت بتن در داخل کانی تاکسی های شهر تهران با استفاده از... مقدمه

ترکیبات آلی فرار (Volatile Organic Compounds) موادی هستند که دارای کربن آلی بوده و نقش جوش آنها در فشار 101 کیلو پاسکال کمتر از 373 درجه کلوین بوده و پس از ذرات معلق بیشترین فراوانی و تنوع نشر را دارا می‌باشد (1). بنزن (C6H6)، به عنوان یکی از خط‌نکات ترین ترکیبات آلی فرار در تولید مواد و محصولات مختلفی از جمله بنزین، روغن، زرین، لاستیک‌ها، لگن، نگن و واکس، تولید مواد شیمیایی آلی ترکیبی و انواع بلاستیک استفاده می‌شود (2). مواجهه طولانی مدت با بنزن حتی در مقادیر کم و جزئی از اهمیت بالایی بوده و می‌تواند منجر به بروز علائم، عوارض و بیماری‌های متع天赋ی در انسان از جمله کاهش گلیول، عفونت خون، بیشتهابی، مردرد، گیجی، خستگی و خونریزی از بین و لوسیوم گردید (3). بر اساس تعیین سازمان بین‌المللی تحقیق بر روی سرطان (International Agency for Research on Cancer) بنزن یکی از مواد سرطان زای قطعی می‌باشد (4).

نتیجه‌گیری‌ای انجام شده در سناتور و مشابه منجر به نیاز به تماس گردد و بیشتر از کارگران و افراد جامعه با این ماده خطر ناک می‌گردد. استفاده از فوم، روش‌های اسمی و داشتن داشتن این ادوات، بسیاری از آمریکا نشان داده است که مردم این کشور روزانه به طور متوسط 90 دقیقه از وقت خود را داخل اتومبیل می‌گذرانند (22).

قبل از سال 1990 آنالیز ترکیبات آلی فرار عمداً با استفاده از EPA روش‌های پیشنهاد شده توسط EPA انجام می‌شده ولی از سال Solid Phase Microextraction (SPME) توسط پالولیزین اباد و سپس توسط محضین دیگر توسه یافته در حالی که روش سیستمی ساده از افزایش پردازش ساده، معنیبرد، با دقت و صحت بالا و بی‌نیاز به حلال بوده و با ادامه مراحل نمونه برداری، استخراج، تغییر و آماده سازی نمونه، قابلیت انتقال مستقیم آنالیز ها را به GC فراهم می‌کند.
بررسی میزان غلظت بتن در داخل کانی‌های شرکت انجام شدند. گردید که میزان غلظت بتن در میان بتن‌هایی که طوری روانه با استفاده از کالیبراتور حباب صیادی کالیبره و با استفاده از شیفته رابط به‌کار می‌رود، از نمونه‌برداری کیسه 3 بار با هوا تمیز بر و خالی می‌شده‌باید از تنظیم دیب پمپ (5/2 لیتر بر دقیقه) نمونه‌برداری به مدت 8 دقیقه انجام تا حجم کیسه به 4 لیتر (80 درصد حجم کیسه) برسد. نمونه‌های این‌چه‌سیس بلافاصله جهت آنالیز به آزمایشگاه منتقل گردیدند. لذا تعداد 30 نمونه به دیب پمپ از 30 نمونه‌برداری آزمایشگاه با استفاده از روش طبق شرایط در روش فوق استخراج و با استفاده SPME کروماتوگرامی گازی-یونیزاسیون شعاع یک دقیقه در طول 60 دقیقه، قطر DB-5MS–J&W Scientific FID به مدت 25 mm ضخامت فیلم 0.25 μm دمای محل تزریق 30 hic در ور و تزریق گردید. همچنین این‌چه‌سیس آلومینیوم به مدت 40 دقیقه به مدت زمان یک دقیقه در این دما باقل می‌ماند. سپس دما را به شیب 15 °C/min به 90 درجه رسانید و سپس به مدت 4 دقیقه در این دما باقل می‌ماند. در انتهای آماده‌سازی (فیلتر) به مدت 10 μm می‌باشد. نمونه‌ها به مدت 4 دقیقه در این دما باقل می‌ماند. حتی اگر 8 میلی لیتر بر دقیقه بود، سپس نسبت سطح زیر منحنی به سطح زیر منحنی استاندارد منحنی بر هر شیفت مخلوط گردید. همچنین از ماناول به عنوان استاندارد داخلی استفاده گردید. بننیز، ماناول و استخراج مورد استفاده در این مطالعه در جریه خلوص مناسب (HPLC Grade) از شرکت مركب آلمانی نهی گردیدند.
بنا بر این مدت زمان ۳ دقیقه به عنوان زمان بهینه استخراج انتخاب گردید (شکل ۱). زمان بهینه بارز جذب در اینچکتور نیز بر اساس زمان مورد نیاز برای بارز جذب آنالیزات از روي فیبر در اینچکتور مورد بررسی قرار گرفت. نتایج نشان داد که پس از ۶۰ ثانیه بارز جذب فیبر در اینچکتور در دمای ۵۰° افزایش در میزان آنالیزات بارز جذب شده دیده نشد. بررسی کروماتوگرام فیبر پس از ۶۰ ثانیه بارز جذب نیز نشان میدهد که هیچ گونه آنالیزاتی در روي فیبر پس از این زمان بازیافت باقی نمانده است (شکل ۱).

نتایج حاصل از ارزیابی سه نوع فیبر تجاری PDMS, PDMS/CAR و PDMS/DVB نشان داد فیبر PDMS/CAR از حساسیت بیشتری نسبت به سایر فیبر های مورد مطالعه در نمونه برداری از نتین برخوردار است (شکل ۱). بنابراین اساس در تمام آزمایشات بعدی از این فیبر برای استخراج نتین استفاده گردید. نتایج بررسی در خصوص مدت زمان استخراج نتین با استفاده از فیبر PDMS/CAR نشان داد که میزان استخراج این ماده پس از ۳ دقیقه به حالت تعادل می‌رسد.

![شکل ۱: ارزیابی فیبرهای مورد استفاده جهت استخراج نتین](image1.png)

![شکل ۲: تأثیر زمان استخراج نتینه توسط فیبر PDMS/CAR](image2.png)
نمودار ۳: مدت زمان بازیافت نمونه از فیبر در دستگاه گاز کرومانتوگرافی

نتایج مربوط به غلظت بنزن در کابین تاکسی‌ها در حالت توقف و حرکت در جدول ۱ آمده است. با توجه به نتایج حاصله از نمونه برداری از ۳۰ تاکسی مورد بررسی، بالاترین و پایین ترین غلظت بنزن داخل کابین در حالت توقف ۳۸۰۰ µg/m³ و در وضعیت حرکت به ترتیب ۱۵۰۰ µg/m³ و ۵۵0 µg/m³ بود. نتایج همچنین نشان داد که میانگین غلظت بنزن در برد به عنوان در وضعیت توقف و حرکت متفاوت می‌باشد. به طوری که میانگین غلظت بنزن در سه برد بالا و پایین و در وضعیت توقف به ترتیب ۱۰۶۸ و ۸۲۸ و ۸۰۰ میکروگرم بر متر مکعب (µg/m³) و در وضعیت حرکت ۲۴۶ و ۲۷۹ میکروگرم بر متر مکعب (µg/m³) بودند. تجربه و تحلیل آماری این نتایج با استفاده از آزمون آماری نشان داد که هر چند میانگین غلظت بنزن در تاکسی‌های گردابه‌ای از دو برد دیگری باشد ولی از نظر آماری این اختلاف معنی‌دار نمی‌باشد (P>0.05).
جدول ۱: میانگین غلظت بنزن (۱۲/۵/۱۳۹۹) در ناکاسی‌ها در وضعیت توقف و حرکت

<table>
<thead>
<tr>
<th>غلظت بنزن</th>
<th>نوع برنده وضعیت</th>
<th>تعداد نمونه</th>
<th>انحراف میانگین</th>
<th>جدایی حداکثر</th>
<th>ناکاسی</th>
<th>خودرو</th>
</tr>
</thead>
<tbody>
<tr>
<td>alf Tوقف</td>
<td>5</td>
<td>۱۰۸۴</td>
<td>۳۲۰۰</td>
<td>۱۵۸</td>
<td>۵۸۴</td>
<td></td>
</tr>
<tr>
<td>حرکت</td>
<td>5</td>
<td>۱۰۰۰</td>
<td>۳۶۴</td>
<td>۵۹</td>
<td>۲۲۱۹</td>
<td></td>
</tr>
<tr>
<td>ب توقف</td>
<td>5</td>
<td>۸۲۸</td>
<td>۱۲۲</td>
<td>۴۷</td>
<td>۲۸۴</td>
<td></td>
</tr>
<tr>
<td>حرکت</td>
<td>5</td>
<td>۸۶۲</td>
<td>۵۷</td>
<td>۲۸۴</td>
<td>۲۲۱</td>
<td></td>
</tr>
<tr>
<td>ج توقف</td>
<td>5</td>
<td>۸۰۰</td>
<td>۴۳۰</td>
<td>۳۰۳</td>
<td>۲۸۴</td>
<td></td>
</tr>
<tr>
<td>حرکت</td>
<td>5</td>
<td>۱۶۴۴</td>
<td>۷۹</td>
<td>۲۷۹</td>
<td>۲۲۱</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲: مقایسه میانگین غلظت بنزن (۱۲/۵/۱۳۹۹) در دو وضعیت توقف و حرکت

<table>
<thead>
<tr>
<th>paired-t-test</th>
<th>تابع آزمون</th>
<th>انحراف میانگین</th>
<th>میانگین بنزن توقف</th>
<th>میانگین بنزن حرکت</th>
<th>p-value:</th>
<th><۰/۰۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>توقف</td>
<td>۹۰۵</td>
<td>۲۷۵</td>
<td>۳۰۹</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بحث و تجیه گروه

با توجه به اینکه هدف از انجام این مطالعه تعیین میزان غلظت بنزن در داخل کابین تاکسی بود لذا با توجه به متفاوت بودن برند تاکسی‌های مختلف تاکسی‌های فعلی، بخشی از تابعیت به فناکد برند بررسی و ارزیابی گردیده‌اند به این‌نکه با توجه به اینکه عوامل متعددی در میزان غلظت بنزن اندامه گیری شده‌ای است که این نشان‌دهنده از انتخاب‌های روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علاقه‌مند در چنین اعلامیّه‌ای روزنامه تاکسی‌های مختلف میزان غلظت توقف و حرکت این نتایج منبع می‌باشد به این‌نکه از این‌نکه روش‌های تریبی‌ای و وجود کم‌های تنظیم آمیخته‌بین‌ها و سیستم‌های تهیه‌کننده و هنگامی فرد علا
بیمارسی میزان غلظت بنزین در داخل کابین تاکسی های شهر زیرا با استفاده از...

مطالعه، میانگین غلظت بنزین در کلیه تاکسی ها در وضوح حرکت و پس از 15 دقیقه رانندگی یا شبیه‌سازی کالما باز از میزان بیشتر نشان داد.

داخل کابین تاکسی در یکی از برند ها 108.98 µg/m³ بود که تقریباً 4 برابر میزان مجاز ارائه شده بود. میانگین غلظت بنزین بالاتر بود. میانگین غلظت بنزین NHMRC داخل کابین تاکسی در یکی از برند ها 68.7 µg/m³ بود که تقریباً 12 برابر حد مجاز می باشد. در مطالعه ای که مورد تکریک داده شده نشان داد که نتیجه مطالعه ای که 68.7 µg/m³ می باشد. میانگین غلظت بنزین آزاد شده در داخل کابین اتوپوس های چند گزارش شده است. (21) که هر دوی این مقدار کمتر از مقدار متوانید مرتبه به مقدار بودن لازم استفاده در داخل خودرو، شرایط آب و هوایی مکان، روش نمونه برداری، استخراج نمونه و زمان نمونه برداری باشد.

پیشنهاد گزارش‌های متن‌نویسی در خودروی که دما داخل خودرو یکی از مهمترین فاکتورهای تاثیر گذار بر روز گزارش‌های داخل کابین خودرو می باشد (327,238) طبق فاهی‌های زایو کاجن با افزایش دمای داخل اتوپوس‌ها در حالت توقف، مقدار نیز سریعاً افزایش می یابد (21). ولی پاساژ همکاران دریافتند که مقدار در داخل خودرو با افزایش دما کاهش می یابد (327). به این دلیل که در دمای بالاتر تعیینهای خورشیدی نیز افزایش می یابد که منجر به از دست رفتن مقدار زیادی از خودرو با به دلیل تجهیز نوشیمیایی می گردد. در مطالعه حاضر رابطه ای بین دما و غلظت بنزین مشخص گردید که این ممکن
نتایج به دست آمده در این مطالعه نشان می‌دهد که میانگین غلظت بتن موجود در کانی‌های تاکسی‌های هم در وضعیت مورد توقف و هم در وضعیت حرکت از میزان مجاز ارائه شده توسط شورای تحقیقات پزشکی و سلامت ملی استرالیا (NHMRC) ۵۰۰۰ μg/m³ (بلاتر می‌باشد.

با توجه به این که در فصل نتایج هرگز در اثر فقط یک پزشکت نیست و یا توجه به این که در اثر فقط تکنیک به کار رفته اضافه می‌شود، بنتن تحفه‌ای با روشنگری آنالیز بتن در تحقیقات بهداشت حرفه ای با روشنگری SPME نوع خود جدید می‌باشد. در مطالعه حاضر، غلظت بتن آزاد شده از منابع داخلی ماهینه‌ها در حالی توقف و حرکت اندازه‌گیری شد و در حالی که در نزدیکی از ترکیبات الکلی فزار در خودروی در حال حرکت اندازه‌گیری شده است (۴۴-۴۷). نتایج این مطالعه غلظت بالایی بتن در تاکسی‌ها را نشان می‌دهد. با توجه به این که این مقدار در فصل بهار به دست آمده، به نظر می‌رسد در نتایج با توجه به افزایش دمای هوا، غلظت بتن آزاد شده افزایش یابد. در نتیجه رانندگان تاکسی‌ها و افرادی که از خودرو به مدت طولانی استفاده می‌کنند در معرض مواجه به این مقدار خطرناک و سرطان‌زا می‌باشند که ممکن است باعث ایجاد آثار منفی بر روی سلامتی افراد گردد.

References

17-Duffy BL, Nelson PF. Exposure to emissions of 1,3-butadiene and benzene in the cabins of moving motor vehicles and buses in Sydney, Australia. Atmospheric environment 1997;31(23):3877-3885.

Survey of the In-Cabin Benzene Concentration in Yazd Yavi-cabs Using Solid Phase Microextraction Technique

Barkhordari A* (Ph.D) Esmaeelyan S** (MSc) Mosadegh M *** (PhD) Falahzadeh M****(PhD) Tahmasebi N** (MSc) Zare A *****(M.Sc)

*Associate Professor of Occupational Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
**MSc in Occupational Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
***Assistant Professor of Toxicology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
**** Associate Professor of Statistics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
*****MSc Statistics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Background: To establish a method for determination of in-cabin benzene and evaluate the occupational exposure, a cross-sectional study was conducted.

Methods: In this descriptive study, 30 taxi-cabs were selected and the concentrations of benzene was measured in stopping and driving conditions using solid phase microinSTRUCTION (SPME) method.

Results: The overall average concentration of benzene in all brands was 905 and 309 μg/m³ under stopping and driving conditions, respectively. Under stopping condition, the highest and lowest average concentrations were 3200 and 122 μg/m³ respectively. After 15 minutes of driving, the levels lowered to 1000 and 57 μg/m³, respectively. The concentration of benzene decreased rapidly and significantly, after 15 minutes of driving with opened windows (p<0.05). In both stopping and driving conditions, the concentration of benzene in taxi-cabs with more than six months life time (1138 and 393 μg/m³) was higher than those of less than six month life time (671 and 225 μg/m³). However, no significant variation was observed.

Conclusion: The concentration of benzene measured herein in this study, markedly exceeds the proposed indoor benzene NHMRC standard. The results indicate that opening the windows before driving reduces the exposure of drivers to benzene. The result of this study could also be useful for further monitoring program of in-vehicle air quality.

Key words: Benzene, SPME, Air pollution, Exposure evaluation, Taxi